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Abstract

The criminal justice system affects millions of Americans through criminal convictions
and incarceration. In this paper, we introduce a new method for credibly estimating the
effects of both conviction and incarceration using randomly assigned judges as instruments
for treatment. Misdemeanor convictions, especially for defendants with a shorter criminal
record, cause an increase in the number of new offenses committed over the following
five years. Incarceration on more serious felony charges, in contrast, reduces recidivism
during the period of incapacitation, but has no effect after release. Our method allows
the researcher to isolate specific treatment effects of interest as well as estimate the effect
of broader policies; we find that courts could reduce crime by dismissing marginal charges
against defendants accused of misdemeanors, with larger reductions among first-time de-
fendants and those facing more serious charges.
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Decision-makers, such as judges and doctors, can profoundly affect individual outcomes
through the choices they make. As a result, quasi-randomly assigned decision-makers are
widely used as instruments to estimate the causal effect of important policies and treatments
as varied as incarceration, disability insurance, and hospital quality (Kling, 2006; Maestas,
Mullen and Strand, 2013; Doyle et al., 2015). The majority of prior work has used these
examiner designs to estimate the effect of a single treatment, such as incarcerating a defendant,
and interpreted their analysis as identifying the heterogeneous effects of individuals who are
marginal to a policy change (e.g., Aizer and Doyle Jr, 2015). However, examiners often
make choices over more than two options—for example, whether to acquit, convict but not
incarcerate, or convict and incarcerate—which threatens the validity and interpretability of
this design (Heckman and Urzua, 2010).

In this paper, we develop a new framework to analyze settings with multiple observed
treatments and randomly assigned examiners. We first study the common approach of in-
strumenting only for the treatment of interest and show that the resulting 2SLS estimand is
interpretable only under restrictive assumptions on treatment effect heterogeneity or on how
examiners’ decisions might differ. Unlike other institutional features required in this design,
such as random assignment, these restrictions are difficult to verify and researchers may not
be confident that they hold exactly. Incorrect assumptions can lead to inconsistent or even
wrong-signed estimates. To credibly account for these issues, we study a model of multiple
treatment assignment that imposes only weak assumptions on decision patterns across exam-
iners, and which can be translated into a tractable structural form for estimation. We show
how our approach allows the researcher to consistently estimate traditional IV target param-
eters, decompose them into margin-specific subcomponents, and investigate a wide variety
of policy-relevant treatment effects (Heckman and Vytlacil, 2005). The cost of our weaker
assumptions on examiner behavior is that the target parameters are only partially identified,
although we find that the bounds are highly informative.

We use this new framework to analyze the effects of conviction and incarceration in the
US criminal justice system. Both of these criminal sanctions are common—in each year, ap-
proximately 9 million people are convicted and 1.7 million incarcerated—but they are typically
studied separately and in different settings to avoid the conceptual issues arising from multiple
treatments.1 Convictions are usually studied in the context of minor charges where incarcer-
ation almost never occurs (Agan, Doleac and Harvey, 2022), while research on incarceration
focuses on more serious offenses where the comparison group is almost always convicted (Garin
et al., 2023). Consequently, little is known about the impacts of these sanctions for the mil-
lions of defendants outside of these relatively small groups or whether results from disparate
environments can be replicated in a common setting. It also complicates efforts to understand
the effects of potential policy changes, since most reforms would affect multiple margins; for
example, raising the standards for a conviction would also reduce the incarceration rate.

1There are 13 million misdemeanor and 5 million felony cases filed each year in state courts (Ostrom et al.,
2020). We use conviction rates from Chien (2020) to impute conviction numbers. BJS (2020) reports 530,000
felony incarcerations in 2020; we impute misdemeanor incarcerations using the incarceration rate in our sample
(10%) and the Ostrom et al. (2020) case numbers.
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We have three main findings. First, we find very different effects of conviction and incar-
ceration. Incarceration reduces future crime through incapacitation, with felony incarceration
reducing recidivism during the period the defendant is still in prison and misdemeanor incar-
ceration (which on average results in only 30 days in jail) having a precisely estimated null
effect. However, we find that misdemeanor convictions result in higher levels of future crime
and—consistent with a key role for criminal records—these effects are larger for defendants
without serious prior convictions.

Second, we investigate a series of possible criminal justice reforms that incorporate changes
along both conviction and incarceration margins and show there is scope for policies to reduce
punitiveness while improving public safety. Increasing judges’ leniency in determining guilt
for misdemeanor defendants would reduce future crime and involvement with the criminal
justice system. These gains disproportionately accrue to defendants accused of more serious
misdemeanor offenses, so policies focusing on this group would be even more beneficial.

Finally, in this setting 2SLS does not always reliably estimate the treatment effects of
interest: a researcher instrumenting for conviction with judge assignment would dramatically
overstate the increases in crime that result from conviction. We do, however, find that the
exclusion and monotonicity violations are small when instrumenting for incarceration.

We begin by examining what 2SLS allows us to learn about defendant outcomes under
conviction and incarceration, relative to dismissal. The standard approach in the literature
is to instrument for a single treatment of interest with judge assignment. We decompose the
2SLS estimand into its constituent effects and show that it will typically not be interpretable as
a treatment effect because of the presence of exclusion violations: when judges vary in multiple
margins of treatment, it is not typically possible to attribute the variation in outcomes across
judges to a single margin. The most common solution is to instrument for both treatments
simultaneously using 2SLS; however, as is well-known from prior work, the resulting estimand
will typically be interpretable only if the effect of each treatment is the same for all complier
groups.

These findings motivate us to develop a model of examiner decisions over more than two
potential choices that we can use to credibly recover treatment effects. The challenge is
that our institutional setting requires a high degree of flexibility in response patterns. In
particular, the law requires that judges consider different, unrelated factors when deciding
whether to convict a defendant at trial and whether to incarcerate a guilty defendant during
the sentencing process. It is likely that judges evaluate each of these different dimensions of
choice in a heterogeneous way, which leads to specific response patterns such as pairs of judges
with one set of compliers that move from conviction to incarceration, and another set that
moves from incarceration to dismissal.

To account for this needed flexibility, we use a latent monotonicity assumption that is
motivated by the institutional structure and accommodates the two-way flows of compliers
prevalent in our setting. We show that latent monotonicity nests the compliance groups avail-
able in ordered monotonicity (Angrist and Imbens, 1995), unordered monotonicity (Heckman
and Pinto, 2018), and single-index choice (Heckman, Urzua and Vytlacil, 2006), three models
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that are commonly used in settings with discrete instruments. The cost of this flexibility is
that we are required to develop a novel identification approach. We translate our assumptions
on potential outcomes into an equivalent threshold model of judge decisions and demonstrate
that the parameters of this selection model—and thus, the size and even existence of each
compliance group—are not identified from the data, making it unclear how one could estimate
treatment effects.

One approach under latent monotonicity has been to condition on judge conviction propen-
sities and estimate only the effect of incarceration relative to conviction (Arteaga, 2021).2 We
show how to go beyond this and estimate the relative effects of all three treatments. Our
insight is that for each admissible selection model that is consistent with the observable judge
treatment propensities, one can estimate marginal treatment response functions via simple
linear regression and aggregate them up to recover a wide variety of 2SLS-weighted and policy-
relevant treatment effects (Brinch, Mogstad and Wiswall, 2017; Heckman and Vytlacil, 1999,
2005). Under a semiparametric assumption on the primitives that drive selection, we can
tractably search across all of these admissible selection patterns. Since the true underlying se-
lection pattern is not identified from the data, we take the union of these estimates to comprise
the identified set for the treatment effect of interest (Kamat, Norris and Pecenco, 2023).

We estimate the model using data from the three biggest counties in Ohio, which encompass
the cities of Cleveland, Columbus, and Cincinnati. These felony and misdemeanor courts
are broadly representative of the American criminal justice system during our study period,
reaching from the early 1990s to 2016. Key for our purposes, defendants are randomly assigned
to judges, who are responsible for conducting trials and approving any plea deals. We use our
method to study the effect of conviction and incarceration—relative to each other and to
dismissal—on the number of new charges and convictions in the 5 years following the focal
case filing date.

2SLS suggests that incarceration reduces the number of future offenses by 0.362 over the
following five years, a 22% reduction relative to the mean, with statistically significant impacts
for both felony and misdemeanor incarceration. It also suggests that conviction on more serious
felony charges leads to increases in future charges of 0.519 (a 33% increase).

To explore the validity of the 2SLS estimates, we first use our model to estimate treatment
effects stripped of bias resulting from exclusion and monotonicity violations. Averaging across
felony and misdemeanor courts, we find that the 2SLS estimate using incarceration as the
treatment accurately reflects a causal effect; the exclusion and monotonicity terms are small
and statistically insignificant. Our methodology further clarifies the 2SLS estimate identifies
the effect of incarceration relative to conviction—nearly all of the weight is on compliers who
are moved from conviction to incarceration by the instruments. In contrast, the 2SLS estimate
for conviction (whether or not the defendant was also incarcerated) is plagued by important
violations of exclusion and does not represent the effect of conviction on future crime. Multiple-
treatment 2SLS models, which are the most commonly used robustness checks in these settings,

2Under latent monotonicity, all compliers between judges with the same conviction propensity are moved
between incarceration and conviction without incarceration, and so this method returns valid estimates of the
effect of incarceration relative to only conviction when exactly conditioning on this propensity.
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do not correct this bias.
Examining the estimates in more detail, we find that the treatment effects differ dramat-

ically between misdemeanor and felony courts. For felony defendants, we find little evidence
that conviction affects criminal behavior due to judges largely agreeing on conviction decisions,
but we do find that incarceration dramatically lowers future charges and future convictions, by
[−0.379,−0.345] and [−.364,−0.323] respectively.3 Consistent with other recent work (Norris,
Pecenco and Weaver, 2021; Rose and Shem-Tov, 2021), the effect of incarceration on crime in
each year closely tracks the effects on the number of days spent incarcerated in that year. We
conclude that these results are mostly driven by incapacitation effects.

In contrast, we see no effect of misdemeanor incarceration, potentially because sentences
are short and hence there is little scope for incapacitation. Conviction, however, increases
recidivism by a considerable amount, particularly for defendants without a prior felony con-
viction. For this group, a conviction causes an additional 0.165 to 0.817 charges over the
subsequent five years. The effects are even larger on the number of offenses a defendant is
convicted of over the next five years, consistent with future police officers, prosecutors and
judges being less lenient towards individuals with longer criminal records.

Motivated by the 2SLS-weighted effects, we next use our method to directly estimate
the effects of possible policies. We consider reforms that would marginally increase leniency
in either the conviction dimension (such as a higher evidentiary standard, or a policy of
not prosecuting marginal cases) or the sentencing dimension (such as a change to structured
sentencing guidelines to make them more lenient, or more consideration of mitigating factors).
Policies increasing leniency in the conviction dimension induce changes in both conviction
and incarceration rates and, consequently, require knowledge of treatment effects along both
margins. We find that greater misdemeanor conviction leniency would decrease future charges
and convictions at essentially no cost. Interestingly, the benefits are particularly large for
defendants charged with more serious offenses who would also be incarcerated if convicted.4

Not all reforms are crime-reducing though—leniency in sentencing would increase future crime
in felony courts through decreased incapacitation.5

Our analysis relates to several literatures. We first contribute to the extensive body of work
using examiner assignment designs. Numerous papers have acknowledged that examiners of-
ten choose between more than two options and that this is a threat to causal identification,
including in the specific setting of crime we focus on (Bhuller et al., 2020; Norris, Pecenco
and Weaver, 2021; Mueller-Smith, 2015). In these cases, they note that 2SLS estimates may
be interpreted as causal effects only under strong homogeneity assumptions, such as constant
treatment effects across individuals.6 Our analysis, in contrast, shows how to estimate treat-

3Throughout the paper we use square brackets to denote bounds and parentheses for 95% CIs.
4We also consider larger policy changes that would eliminate either conviction or incarceration, and find

that there might be even larger benefits from policy reforms that target non-marginal defendants.
5Incapacitation is an expensive way to reduce crime. We calculate that each averted crime costs between

$55,000 and $105,000 in prison costs alone, even before accounting for other social impacts.
6Bhuller and Sigstad (2022) provides a high-level condition on the compliance groups that restricts two-way

flows and under which 2SLS delivers a positively-weighted average of heterogeneous treatment effects. However,
this condition is not usually satisfied under standard models of judge decision-making, including the ones we
consider in this paper.
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ment and policy effects while allowing for heterogeneous treatment effects and flexible choice
behavior by judges.

Furthermore, our method provides a blueprint for estimating the effects of multiple treat-
ments in examiner designs that is more general than existing work. As we discuss in Sec-
tion 5.4, one popular approach has been single-index models of choice (Heckman, Urzua and
Vytlacil, 2006; Rivera, 2023). We show that the single-index model is a special case of latent
monotonicity, and therefore the bounds that arise from our method will necessarily include
the estimates from a single-index approach. Our model is also weaker than other multiple-
treatment generalizations applicable to our setup, such as ordered monotonicity (Angrist and
Imbens, 1995) and unordered monotonicity (Heckman and Pinto, 2018). In particular, our
model allows for what would be traditionally considered defiers—defendants who move out of
incarceration when assigned to a more severe judge—as well as two-way flows into and out
of conviction. Furthermore, we show that both ordered and unordered monotonicity converge
to the single-index assumptions as the number of judges with varying treatment propensities
grows, suggesting that our bounds will encompass the estimates from a wide variety of choice
models.

Our method can also be seen as more general than recent work that has sought to
achieve identification in examiner assignment designs through the use of separability con-
ditions (Humphries et al., 2023, hereafter HOSSD). This approach assumes the existence of
additional regressors that shift judge behavior homogeneously in a latent variable space, and
hence can be used to point-identify the first stage. Although our method does not require
these regressors, if there was a setting where the researcher believed these assumptions were
credible, they could be used along with the judge assignment as a source of additional varia-
tion. We explore this possibility in Appendix A7, where we estimate their model along with a
partially-identified version that differs only in not relying on separability for identification. The
estimates arising from the HOSSD method typically lie outside the semiparametric bounds,
suggesting that relying on covariates for identification is not innocuous and can substantively
affect the results.

In developing these results, our work contributes more generally to the instrumental vari-
able analysis of treatment effects in settings with multiple treatments. Previous work has
focused on parameterizations of the selection model that result in point identification (e.g.,
Hull, 2020; Kline and Walters, 2016). However, an implication of our flexible monotonicity
assumption is that point-identifying restrictions for our selection model do not naturally arise.
We instead allow the identification of treatment effects under a more flexible, partially iden-
tified selection model. Our approach is also distinct from alternatives used in the literature
to identify related parameters, which exploit continuous variation in the instrument (e.g.,
Heckman, Urzua and Vytlacil, 2008; Lee and Salanié, 2018), multiple instruments (Mogstad,
Torgovitsky and Walters, 2021; Mountjoy, 2022), or additional data on fallback options (Kirke-
boen, Leuven and Mogstad, 2016).

Our approach is most closely related to that of Brinch, Mogstad and Wiswall (2017), which
also uses a marginal treatment effect (MTE) framework. They show in a binary treatment
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setup how simple parametric restrictions on the MTEs allow us to use linear regressions to
estimate treatment effect parameters when discrete variation in the instrument does not non-
parametrically identify the MTEs—see also the more general framework in Mogstad, Santos
and Torgovitsky (2018). However, relative to the binary treatment setup, a key distinction in
the multiple treatment case is that the selection model is not generally point identified. Our
approach, therefore, shows how a semiparametric assumption on our selection model ensures
that we can generally continue to employ several linear regressions to partially identify the
parameters of interest. In this sense, our arguments exploit those from Kamat, Norris and
Pecenco (2023), which shows that such an insight applies in a general class of selection models.

Finally, we contribute to a rapidly expanding literature studying the effects of incarceration
and conviction. Aside from HOSSD and Huttunen, Kaila and Nix (2021), this work has
focused on estimating these effects in isolation. In felony courts, incarceration typically leads
to reductions in future crime,7 but prosecution and conviction for misdemeanors and other
minor crimes tends to increase recidivism (Agan, Doleac and Harvey, 2022; Mueller-Smith
and Schnepel, 2021). It has been unclear whether these disparate findings are caused by
differences in the treatment (conviction versus incarceration), type of offense (misdemeanor
or felony), research design, or geographic location. We find these results appear to generalize
more broadly by replicating the qualitative pattern of effects by treatment and offense severity
found across these different studies using a single unified method in a single location.

In addition, our setting and method allow a more comprehensive examination of the mis-
demeanor criminal justice system than has been previously possible. Although over 11 million
people are admitted to jails each year (Zeng, 2020), there are no causal estimates of the effect
of post-trial misdemeanor incarceration. Our finding of precisely estimated but statistically
insignificant effects stands in contrast to existing work on pre-trial detention, which typically
results in higher rates of reoffending (Gupta, Hansman and Frenchman, 2016; Dobbie, Goldin
and Yang, 2018; Heaton, Mayson and Stevenson, 2017). One possible reason for this discrep-
ancy is that pre-trial detention also increases conviction rates; consistent with this as the key
causal channel, we find that receiving a conviction increases reoffending.

2 Background

2.1 Setting

This study uses data from the courts in Ohio’s three largest counties: Franklin County (con-
taining Columbus), Cuyahoga County (containing Cleveland), and Hamilton County (con-
taining Cincinnati). The state is broadly representative of the criminal justice system in the
United States in terms of both incarceration and recidivism rates.

Our analysis is based on administrative records collected from the online court information
systems. Court records are available starting in the early 1990s (exact date depending on the

7For example, some find decreased crime (Rose and Shem-Tov, 2021; Kuziemko, 2012; Norris, Pecenco and
Weaver, 2021; Huttunen, Kaila and Nix, 2021; Bhuller et al., 2020), mixed results (Green and Winik, 2010;
Estelle and Phillips, 2018; Loeffler, 2013; Harding et al., 2017), and increased crime (Mueller-Smith, 2015).
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county) and contain the full case history, including charges, arraignment date, sentencing date
and decisions (punishment type and sentence length), and defendant characteristics (name,
date of birth, sex, race, and home address). We also use the records to measure future criminal
charges and convictions, linking between defendants in different cases using date of birth and
name while allowing for slight spelling differences via a fuzzy match. See Norris, Pecenco and
Weaver (2021) for details.

Table 1 summarizes the analysis sample. The first column shows that the defendants are
disproportionately male (77%), have an average age of 32, and while the broader population of
the counties is mostly white, the majority of defendants (61%) are black. Drug and property
crimes are the most common offenses (29% of cases each) with fewer for violent (19%), family
(14%), and sex (5%) offenses. Defendants have committed an average of 2.2 prior offenses,
although the distribution is heavily right-skewed and the median defendant has no past charges.

A key advantage of our setting is the ability to study both misdemeanor and felony cases,
which are handled in different courts in each county (Municipal and Common Pleas, respec-
tively).8,9 Misdemeanors are relatively minor offenses with incarceration sentences no longer
than one year; typical examples include soliciting, theft worth less than $1,000 and assault
without a deadly weapon. Felonies are more serious and include robbery, theft worth more
than $1,000, and assault with a deadly weapon. Felony offenses come with much stiffer criminal
penalties. Panel B of Table 1 shows the treatment shares by court; 29% of felony defendants
are incarcerated, with a median sentence conditional on incarceration of 615 days. Just 10%
of misdemeanor defendants are incarcerated, with a median sentence of only 38 days. Fur-
thermore, conviction rates are higher in felony courts (87 versus 53%) and a felony criminal
record is typically viewed as more serious, potentially affecting labor market opportunities
going forward (Agan et al., 2023).

2.2 Using judges as instruments

Importantly for the design of this study, Ohio law mandates that most criminal cases are
randomly assigned to judges. The random assignment is carried out by a computer program
and done separately by court after charges are filed.10 Defendants with ongoing cases or
who are on probation are excluded from this randomization, although this amounts to a
minority of cases. We drop all non-randomly assigned cases from our sample, and conduct
our analysis using the identity of the first-assigned judge to account for any issues arising
from the approximately 5% of cases who are transferred between judges due to workload and
scheduling issues. To restrict comparisons between the set of judges available at any given

8We focus on misdemeanor cases of 1st to 4th degree to focus on cases commonly considered criminal.
Municipal courts also handle traffic cases and minor misdemeanors, which are very low-level offenses such as
noise ordinance complaints.

9While a charge can be reduced from a felony to a misdemeanor throughout the court process, we classify
each case by where it is originally filed and refer to Common Pleas cases as felony cases whether or not the
judge reduces the severity of the charge.

10This means that a decision on whether the defendant will be held pre-trial has already been made at the
time of judge randomization. These decisions are made by a separate bail judge, and although they have
important effects on defendants (Dobbie, Goldin and Yang, 2018) analyzing them is outside the scope of this
study.
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time, throughout our analysis we include court-year fixed effects. Consistent with random
assignment, the last two columns in Table 1 show that the judges’ incarceration and conviction
severity are uncorrelated with observable characteristics of defendants (p=0.76 and p=0.35,
respectively) conditional on stratifying fixed effects.

In criminal cases, courts make two sequential decisions: first, whether to find the defendant
guilty, and second, if they are found guilty, what the sentence will be. The judge has an
important influence on both of these decisions.

After a defendant has been arraigned, the judge guides the proceedings towards a trial. She
oversees the pre-trial procedure, which includes setting the schedule (which can affect lawyers’
preparedness) and determining which evidence will be admissible. These initial decisions can
dramatically affect the likelihood of success at trial, and cases are sometimes dropped by
prosecutors after a string of unfavorable pre-trial decisions.

Defendants in Ohio have a right to a trial by jury. If they choose to exercise this right,
the judge oversees the jury selection process and then provides instructions to the jury, which
votes on whether to find the defendant guilty. If the defendant opts against a jury trial, the
judge makes the ruling herself. Whether or not it is a jury trial, however, the decision on
guilt is supposed to be made without regard to the possible sentence: jurors are not even told
the range of possible punishments in an attempt to stop this information from affecting their
conviction decision. As we discuss in Section 4, we mirror this institutional structure in our
identification strategy.

For defendants who have been found guilty, the judge determines the sentence from an
offense-specific allowable range that often includes the possibility of either probation or an
incarceration sentence.11 The determinants of the sentence are different from the factors that
affect conviction and include whether there were mitigating or aggravating features of the
offense, as well as details of the defendant’s criminal and personal history. To concentrate
attention on the legally relevant facts, sentencing usually occurs only after a presentencing
investigation (PSI) that contains this information (as well as victim input) has been com-
pleted.12 Importantly, judges’ sentencing decisions are not allowed to reflect their prior on the
defendant’s guilt.

One important institutional factor in Ohio courts is the prevalence of plea deals. Approx-
imately 88% of felony cases end in this way, with a guilty plea from the defendant before trial
and a joint recommendation from the prosecutor and defense attorney on the sentence.13 The
judge then proceeds with sentencing (usually after receiving a PSI), taking the recommenda-
tion into consideration. While a large literature has studied plea deals (Landes, 1971; Priest
and Klein, 1984; Bebchuk, 1984; Silveira, 2017), to our knowledge there has not been an anal-

11One other way that judges affect sentences is through changing the degree of offense the defendant is
convicted of; for example, by determining the value of a theft was less than $7,500, which reduces the offense
level from a third degree felony to a fourth degree felony and decreases the maximum prison time.

12For felony cases, until 2016 a PSI was required before imposing probation or a sentence shorter than six
months. Since one of these punishments is usually an option for most offenses (and because most judges like
to have a PSI even when determining the length of incarceration), PSIs are completed in most cases. They are
not required in misdemeanor cases, but judges often request them anyway.

13Data on plea deal prevalence comes from the felony court in Cuyahoga, which has slightly higher conviction
rates than the other courts.
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ysis of how plea bargaining might affect or invalidate choice models based on the institutional
details of a non-plea system. We study this problem in Appendix A1 and show that while
the introduction of plea bargaining might change the treatment that a particular defendant is
assigned to, in a full-information Nash bargaining game, the same two-stage process can be
used to describe the choice model with and without plea bargaining. We return to this issue in
Section 4, when we discuss concrete ways that plea deals could undermine our choice model.

3 IV interpretation and results

In this section we present simple 2SLS estimates of the effects of incarceration and conviction
on outcomes. We then discuss the possible challenges to identification and interpretation that
arise from the multiple margins of treatment in our setting.

3.1 IV estimates

The identity of the assigned judge is commonly used as an instrument for treatments such as
incarceration or conviction. This research design is typically justified by the monotonicity and
exclusion conditions in Imbens and Angrist (1994), which assumes that moving from a lower
to a higher treatment propensity judge makes all defendants weakly more likely to receive the
focal treatment and does not move any defendants between the non-focal treatments. In this
section, we present 2SLS estimates based on this research design.

Given our focus on the conviction and incarceration margins, we aggregate the set of
judicial decisions to be D = {n, c, p}, where n denotes no conviction, c denotes conviction
without incarceration, and p denotes conviction with incarceration.14 We analyze treatments
T that equal Dp = 1[D=p], indicating an individual is incarcerated, or Dcp = 1[D ∈ {c, p}],
indicating any form of criminal conviction. Individuals are assigned to a judge Z ∈ Z =

{z0, z1, . . . , zJ}.
For each of these treatments, we use the following 2SLS specification:

Yi = β2SLSTi + µx + εi (1)

Ti =

J∑
j=1

αj1[Zi=zj ] + φx + ei (2)

where Yi is the outcome and µx and φx are court-year fixed effects as required by the design.15

Table 2 reports the estimated effects of incarceration (Panel A) and criminal conviction
(Panel B) on cumulative number of charges over the following five year period. If the Imbens
and Angrist (1994) assumptions are satisfied, column (1) in Panel A shows that incarceration
reduces the number of future charges by 0.36. Relative to the mean of 1.6 charges over
the next 5 years, this is a consequential 23% decrease. The other columns show additional

14We pick p for the mnemonic with “prison,” although not all incarcerated defendants technically go to
prison, which is for sentences longer than a year. Those who are incarcerated on shorter sentences go to jail.

15Judge instruments are sometimes constructed as leave-one-out averages to ameliorate potential finite sample
bias issues. Because there are many observations per judge, this is empirically unimportant in our setting.
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heterogeneity to contextualize future results. Columns (2) and (3) show the results separately
in the felony and misdemeanor courts. Incarceration significantly reduces future charges by
0.48 for defendants in the felony court, while there is a marginally statistically significant
(p < 0.10) reduction of 0.13 charges for misdemeanor defendants. Although there has been
much recent interest in the potential impacts of criminal justice sanctions for individuals who
have not previously been convicted of a felony, columns (4) and (5) show similar impacts for
this population compared to the full population in both courts.

Turning towards the estimated effects of conviction in Panel B, column (1) shows little
average effect, although this result masks important heterogeneity across offense types. Col-
umn (2) suggests that conviction in felony courts is highly criminogenic, increasing future
charges by 0.52, while column (3) finds a statistically insignificant and smaller decrease in
future charges arising from a misdemeanor conviction. Columns (4) and (5) report similar
results for the sample without a previous felony conviction.

The validity of the arguments in Imbens and Angrist (1994) and its extensions is based
on the assumption of a single treatment. In our context, this translates to the requirement
that the assignment to a higher treatment propensity judge makes all defendants weakly more
likely to be assigned that treatment (monotonicity) and doesn’t move any defendants between
the non-focal treatments. The judges’ ability to affect both conviction and incarceration raises
concerns about the causal interpretation of the above conclusions. A common attempt (e.g.,
Mueller-Smith, 2015; Bhuller et al., 2020; Norris, Pecenco and Weaver, 2021) to account for
this concern is to run an augmented 2SLS specification where the second stage includes both
treatments, and where each treatment is instrumented for with the judge assignment as follows:

Yi = β2SLS
∗

incar 1D
p
i + β2SLS

∗

convic1D
cp
i + µx + εi (3)

Dp
i =

J∑
j=1

α1
j1[Zi=zj ] + φ1

x + e1
i (4)

Dcp
i =

J∑
j=1

α2
j1[Zi=zj ] + φ2

x + e2
i . (5)

Panel C in Table 2 reports estimates of the coefficients β2SLS
∗

incar and β2SLS
∗

convic. While the
results for the impacts of incarceration and overall effects of conviction are unchanged, column
(2) shows a somewhat weaker effect of felony conviction when controlling for incarceration.
These broadly similar results may support the empirical conclusions of the single-treatment
regressions, although previous work has noted the challenges in interpreting this multiple-
treatment specification. In the next section, we develop a framework for interpreting these
estimates further.

3.2 When is 2SLS interpretable?

To provide a basis for our analysis and to highlight how the presence of multiple treatments
makes the 2SLS assumptions more onerous, in this section we provide a simple decomposition
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of the 2SLS estimand into its constituent parts: the target parameter, exclusion violations,
and monotonicity violations. To our knowledge, this result is novel in accommodating more
than two judges, which is key to decomposing the 2SLS estimates in practice. In Section 6.3
we apply this result in our setting.

For most of this section, we focus on the single-treatment 2SLS estimand in (1) when
one instruments for incarceration, but a similar analysis applies if one instead instruments for
conviction. We discuss the multiple-treatment case at the end of the section and provide the
analogous decomposition in Appendix A3.

We represent the observed decision and future criminal behavior using standard potential
outcomes notation, so D(z) denotes the potential decision had the individual been assigned
to judge z, and Y (d) denotes their potential outcome under treatment d. We take the judge
as an exogenous instrument conditional on covariates X, which in our setting are court-year
indicators that control the set of judges available for random assignment to the case:

Assumption E (Exogeneity) Z is jointly independent of
(
Y (n), Y (c), Y (p), D(z1), . . . , D(zJ

)
)

conditional on X.

Our notation also implicitly assumes that the instruments are excludable conditional on
the three treatments: judges can affect outcomes only through the treatments of interest,
rather than through other channels such as variation in sentence length for incarceration
always-takers or through differences in probation conditions for conviction always-takers.

The building block of our decomposition is the compliance group, which is defined by
the vector of treatment responses across judges, (D(z) : z ∈ Z). For any two treatments s
and t, individuals in each compliance group are on average either induced from s into t by
the instruments, or from t into s. As a result, we define ∆s→t as the s→t effect for those
compliance groups who are on average induced between s and t by the instruments, with
the corresponding weights φs→t for each compliance group determined by how much they
contribute to the 2SLS estimand. This leads to the following decomposition:

Proposition 1 Under Assumption E, the 2SLS estimand in (1) with incarceration as the
treatment can be decomposed as

β2SLSincar = φc→p∆c→p + φn→p∆n→p︸ ︷︷ ︸
effect of incar. rel. to alternatives

+φn→c∆n→c + φc→n∆c→n︸ ︷︷ ︸
exclusion violations

+φp→c∆p→c + φp→n∆p→n︸ ︷︷ ︸
mono. violations

(6)

where φs→t ≥ 0 for all s, t ∈ {n, c, p} and

φc→p + φn→p − φp→c − φp→n = 1

Proof and definition of φ: see Appendix A2.

This proposition reveals that β2SLSincar can be viewed as containing three components: the
weighted effect of being in treatment p relative to the non-carceral treatments n and c, the
weighted effect of being in the non-carceral treatments relative to p, and the weighted effect
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of being moved between the two non-carceral treatments.16 Interpretation of β2SLSincar as a
treatment effect of incarceration relative to alternatives therefore requires eliminating the
latter two components of the decomposition.

The most natural way to remove the exclusion violations is through an additional assump-
tion of binary exclusion, or that for all individuals for whom there exist instrument values
z, z′ such that if D(z)=n,D(z′)=c, then Y (n) = Y (c). This condition can be satisfied in two
ways: either there are no individuals who are moved between n and c by changes in instrument
assignment (so φc→n = φn→c = 0), or receiving the treatment n rather than c does not affect
the outcomes of the compliers between n and c (so ∆c→n = ∆n→c = 0). Researchers may
be unsure that either of these assumptions holds; the first because judges differ dramatically
in their conviction rates, and the second because of evidence of the effect of convictions on
outcomes in other settings (Pager, 2003; Agan and Starr, 2018; Agan, Doleac and Harvey,
2022).

Similarly, removing the monotonicity violations requires restrictive assumptions on judge
behavior. The traditional binary-treatment monotonicity assumption requires that no indi-
vidual is moved from incarceration into one of the other treatments when she is assigned to
a higher-incarceration-propensity judge; this implies that φp→n = φp→c = 0. However, this
assumption is at odds with the different standards for conviction and incarceration in our
setting, as highlighted in Section 2.2. Since incarcerated defendants might face the fallback
treatment of either conviction (if the evidence they committed the crime was strong but the
sentencing guidelines did not require incarceration) or not guilty (if the evidence they com-
mitted the crime was middling but the sentencing guidelines made incarceration mandatory
if convicted), this suggests that judges may often differ in their fallback options, violating
monotonicity.

These pitfalls of single-treatment 2SLS, unfortunately, are not generally overcome by in-
strumenting for both treatments simultaneously. In Appendix A3, we provide a detailed
analysis of the 2SLS specification in (3), and show the estimands can be decomposed into
compliance group-weighted effects across different treatment comparisons as in (6). These
effects are a combination of the parameters from the single-treatment case, and neither can
typically be interpreted as a positively-weighted treatment effect.

Contemporaneous work has sought to clarify what additional assumptions can be imposed
for 2SLS to identify causal effects in multiple-treatment models. In particular, Bhuller and
Sigstad (2022) shows that two high-level assumptions—average causal monotonicity and no
cross effects—are sufficient to generate properly-weighted treatment effects. However, these
assumptions impose substantial uniformity in how judges make decisions, and imply that the
relative effect of changing c and p judge propensities on defendants’ likelihood of receiving
treatment p must be the same for all compliers.17 More intuitively, in Appendix A3 we show

16Interpretation of β2SLS
convic is analogous, but with different terms labelled as exclusion and monotonicity

violations.
17An alternative (Proposition B.8) is to adopt a stringent Imbens-Angrist monotonicity condition for each

judge and treatment, as well as the empirically testable assumption that the judge propensities for c and p are
linear in expectation. The monotonicity assumption, however, rules out substitution patterns likely to exist in
examiner contexts such as two-way flows in and out of c.
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how even when the choice model is such that judge-pair comparisons could be used to isolate
margin-specific causal effects, 2SLS fails to isolate these comparisons.

In both the single- and multiple-treatment cases, these interpretational issues are lessened if
the treatment effects are constant across individuals.18 However, constant effects has testable
implications, one of which is that the model will not reject overidentifying restrictions. In
Table 2 we report the results of J tests of overidentification, and reject with p-values of 0 in
each type of court as well as overall.

With treatment effect homogeneity rejected and existing choice assumptions inappropriate
for our setting, a credible analysis requires two things: a set of assumptions on the instruments
that arises naturally from judge behavior in this context, and an estimation methodology that
credibly isolates the instrument-induced changes. The subsequent sections do this in turn.

4 A more flexible choice model

Our goal is to provide a choice model that matches the institutional environment and accom-
modates the key ways that judge assignment might affect defendants’ treatment assignment.
In particular, certain judges might be more likely to find defendants guilty, perhaps because
they are more likely to admit evidence against defendants. Other judges might be more likely
to incarcerate defendants because they have a less lenient understanding of what the sentenc-
ing guidelines require upon conviction. Finally, some judges might be relatively likely to find
defendants guilty and to sentence defendants to prison.

The last pattern is particularly challenging for identification because it raises the possibility
of two-way flows: assignment to judge z rather than z′ might move some defendants from n

(not guilty) to c (convicted but not incarcerated), and different defendants from c to p (prison).
Most existing work (e.g. Heckman and Pinto, 2018) disallows two-way flows in order to point-
identify the share of each complier group.

To address these issues, our choice model matches the legal requirement that judges’ con-
viction decisions are separate and independent of their sentencing decisions. The index repre-
sentation of this model is originally due to Arteaga (2021); we provide a fuller characterization
that links it to an equivalent potential outcomes form. This characterization facilitates a new
result on the flexibility of latent monotonicity over other discrete choice models in examiner
settings. We then introduce a new way to estimate all treatment effects—such as conviction
relative to dismissal—rather than just using 2SLS to estimate the effect of incarceration relative
to conviction as in Arteaga (2021). The cost of this flexibility—and in particular, the accom-
modation of different types of two-way flows—is that the first stage is not point-identified,
and as a result the estimated treatment effects are bounds.

4.1 Latent monotonicity

As we discuss in Section 2.2, the court’s decision-making process proceeds in two steps: they
first assess whether the defendant is guilty, and if they are guilty, decide the punishment.

18In the single-treatment case, one still needs to assume binary exclusion.
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These separate decisions depend on different criteria and sets of facts, and are supposed to be
made separately.

In line with this system, we treat the court as making two sequential decisions: first,
whether to convict, and second, what sentence to impose. We assume that judges behave
monotonically with respect to conviction, and would behave monotonically with respect to
incarceration during the sentencing phase. More precisely, let D∗p(z) denote an indicator for
whether an individual is potentially incarcerated by judge z in the hypothetical case where they
were already convicted. This means that the potential treatment for whether the individual
is incarcerated is given by Dp(z) = Dcp(z)D

∗
p(z). This allows the following monotonicity

condition:

Assumption LM (Latent Monotonicity) For each z, z′ ∈ Z, we have

Dcp(z) ≥ Dcp(z
′) or Dcp(z) ≤ Dcp(z

′) ,

D∗p(z) ≥ D∗p(z′) or D∗p(z) ≤ D∗p(z′) .

Heuristically, this condition imposes that a judge’s incarceration decision would not hinge
on whether she thinks the appropriate guilt standard has been met, in line with the legal
separation between these standards. This rules out certain types of forward-looking behavior
by both the judge and the broader legal system. First, the monotonicity condition on Dcp(z)

implies that if two judges have the same conviction rate, they must convict the same individ-
uals. This rules out situations where one of the judges realizes that she would incarcerate a
particular defendant if she convicted him and, in response, decides not to convict him in the
first place. If the second judge decides to convict (treatment c or p), this violates LM.

Similarly, latent monotonicity rules out certain types of behavior by prosecutors. Suppose
that judge z has a lower conviction rate (treatment c or p) than judge z′, so it must be that
Dcp(z) ≤ Dcp(z

′) under LM. Imagine that conditional on conviction, a particular defendant
would be incarcerated by judge z but only convicted (treatment c) by judge z′. If the prose-
cutors decide that only a carceral sentence would be worth their time and drop the case under
z (but not under z′), then D(z) = p, D(z′) = n for this defendant and LM is violated.

Another possible threat to our choice model comes from plea bargaining. As discussed
in Section 2.2, most cases in Ohio end in a plea bargain, not in a trial. To understand
the possible implications of plea bargaining, in Appendix A1 we build a simple model of a
prosecutor and defense attorney who Nash bargain over the possible sentence. We find that
while plea bargaining can change the outcome of particular cases, if LM is an appropriate
model of the choice process without plea bargaining it will continue to be appropriate after
the introduction of plea bargaining.

The advantage of latent monotonicity is that by mirroring the institutional environment, it
allows for more choice patterns than other available alternatives—and precisely those required
by the setting. Table A7 shows the possible compliance patterns under LM as well as for
ordered monotonicity (Angrist and Imbens, 1995), unordered monotonicity (Heckman and
Pinto, 2018), and single-index choice models (Heckman and Vytlacil, 2005; Bhuller and Sigstad,
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2022; Rivera, 2023). In contrast to these other assumptions, LM allows for two-way flows in
both conviction and incarceration as well as for defendants to be marginal between all three
treatments. We discuss these issues further in Appendix A4, and provide one additional result
that shows that the choice patterns under ordered and unordered monotonicity can become
increasingly restricted as the number of judges increases; LM does not.

It will be convenient to work with a slightly different form of LM for estimation. In the
following proposition, we show how latent monotonicity can be recast as an index assumption.

Proposition 2 Given Assumption E, Assumption LM is equivalent to

D(z) =


n if U1 > g1(z) ,

c if U1 ≤ g1(z) , U2 > g2(z) ,

p if U1 ≤ g1(z) , U2 ≤ g2(z) ,

(7)

where U1 ∼ U [0, 1] and U2 ∼ U [0, 1], and (g1(z), g2(z)) ∈ [0, 1]2 are judge-specific thresholds.
Let F denote the cumulative distribution function of (U1, U2).
Proof: see Appendix A5.

The above proposition shows that Assumption LM is equivalent to imposing a two-stage
threshold crossing equation for each judge’s decision for an individual. Judges first decide
whether to convict an individual or not, and then, conditional on conviction, they decide
whether to incarcerate them or not. Panel A of Figure 1 provides a graphical description of
the threshold structure in the space of the individual latent variables. U1 can be interpreted as
an individual’s resistance to conviction, since judges first convict those with lower values, while
U2 can be interpreted as their resistance to incarceration since judges would first incarcerate
those with lower values. Analogously, g1(z) and g2(z) can be respectively interpreted as a
judge’s level of severity along the conviction and incarceration margins, as those with higher
values respectively convict and incarcerate more defendants. In the special case where U1=U2,
which corresponds to all judges evaluating defendants along only one dimension of criminality,
LM is equivalent to the single-index model.19 However, other distributions of F will, in general,
correspond to richer substitution patterns and can capture the different dimensions of criminal
cases.

While we favor this monotonicity assumption and the associated threshold model primarily
because it shares a number of key features with the institutional context, we can also use our
data to assess the model implications. Appendix A6 derives testable implications of both LM
and a single-index model on judge-pair Wald estimands over appropriately defined outcome
moments and performs these tests. We reject these implications for the single-index model
but not for LM, providing support for our choice model.

19See Appendix A4 for a formal definition of the single index model.
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5 Identification of treatment effects

We develop a novel methodology to apply this choice model to the data. The main iden-
tification challenge is that the parameters of the selection equation—and thus, the size and
even existence of compliance groups—are not point-identified from the data. In this section
we show how we can nonetheless partially identify the first stage and then use polynomial
marginal treatment response functions (Brinch, Mogstad and Wiswall, 2017) to partially iden-
tify a wide range of parameters of interest, including 2SLS-weighted treatment effects and
policy-relevant treatment effects.

5.1 Indeterminacy of the first stage

The selection equations in (7) relate the parameters of the selection model to treatment de-
cisions. They imply that for each judge, the treatment propensities are functions of those
parameters:

P (D=n|Z=z,X=x) = 1− g1(z, x) , (8)

P (D=c|Z=z,X=x) = g1(z)− FU1,U2

(
g1(z, x), g2(z, x)

)
, (9)

P (D=p|Z=z,X=x) = FU1,U2

(
g1(z, x), g2(z, x)

)
. (10)

where we now add x as an argument to g to emphasize that our first-stage identification is
conditional on covariates.

From (8), it is clear that g1(z, x) is directly identified from the data. However, (9) indicates
that g2(z, x) depends crucially on the unobserved joint distribution of U , F .20 Different
distributions of F correspond to different values of g2(z, x) and thus different compliance
patterns.

We illustrate the indeterminacy of the first stage in Panels B and C of Figure 1. The
figure shows the response types between two judges when U is distributed as a normal copula
with unknown correlation ρ. We assume that judge z incarcerates 10% of defendants and
convicts 10%, while judge z′ incarcerates 20% and convicts 60%. These treatment shares
result in different compliance patterns for different values of ρ. In Panel B, where ρ=0,
15% of the population is a n→p compliers and 5% is a p→c complier. There are no c→p

compliers. However, when ρ=0.8 (Panel C), there are no p→c compliers and instead 2.9% of
the population is a c→p complier. Therefore, although for each state of the world, changing
judges from z to z′ results in a 10 p.p. net increase in the incarceration rate, the size and
existence of the compliance groups differs dramatically across values of ρ.

Our challenge is to continue to learn about treatment effects despite non-identification of
the first stage. To make progress on this front, we assume that U is distributed in a parametric
family known up to a parameter ρ ∈ P .21 This substantially simplifies our task, because it

20By adding up of the treatment shares, (10) adds no additional information on g.
21In our baseline analysis, we assume that F is normal copula, although we also consider U distributed

according to a copula based on the logistic distribution (Ali, Mikhail and Haq, 1978).
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means that for a given value of ρ we can directly calculate g(z) using (8)-(10) and thus identify
the compliance groups between each pair of judges.

5.2 Parameters of interest

Our analysis exploits the fact that the parameters of interest can be expressed as known
functions of the same primitives that determine the observed data. We take the primitive of
the selection equation for the judge decisions to be the correlation ρ between the components
of U , noting that ρ determines the judge thresholds g. Following Heckman and Vytlacil (1999,
2005), we take the primitives with respect to the outcomes to be the marginal treatment
response (MTR) functions

md(u1, u2, x) ≡ E[Y (d)|U1 =u1, U2 =u2, X=x]

for d ∈ D. We can then express our parameters of interest in terms of the MTRs and the
unknown primitive of the selection equation, ρ. For example, a key object of interest is a
version of the 2SLS estimand stripped of the exclusion and monotonicity violations present in
(6). Specifically, we take the weighted average of the n→p and c→p effects:

β(n,c)→p = ωc→p∆c→p + ωn→p∆n→p , ωs→t =
φs→t

φc→p + φn→p
(11)

∆s→t =
∑
x∈X

wx

∫
[mt(u1, u2, x)−ms(u1, u2, x)]ws→t(u1, u2, x)dF (u1, u2)

where wx is the weight on covariate cell x. This weight, as well as the weights on the different
compliance groups, ws→t and φs→t, are defined in Appendix A2, where we show that these
weights are also functions of ρ.

We also consider how to estimate the effect of particular policy reforms. For example,
consider a policy that changes the evidentiary burden such that a judge becomes δ more
lenient on the conviction margin. This will move some defendants from p to n, and others
from c to n. Using Pδs→t(z, x) to denote the types who are moved from treatment s to t by the
policy change,22 the effect of the policy on outcomes is∫
u∈Pδp→n(z,x)

[mn(u1, u2, x)−mp(u1, u2, x)]dF (u1, u2)

︸ ︷︷ ︸
dismissal effect for counterfactually incarcerated defendants (p→n)

+

∫
u∈Pδc→n(z,x)

[mn(u1, u2, x)−mc(u1, u2, x)]dF (u1, u2)

︸ ︷︷ ︸
dismissal effect for counterfactually convicted defendants (c→n)

which is a function of both how many defendants are moved into n from p versus c, as well as
the magnitude of the treatment effect for each of these groups. In Section 6.7 we report the
effects of various policies that adjust judges’ thresholds.

22E.g., Pδp→n(z, x) = [g1(z, x)− δ, g1(z, x)]× [0, g2(z, x)].
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5.3 Regression-based solution to identification problem

Just as the parameters of interest can be expressed as functions of the underlying primitives,
so can the observed data. Our challenge is to learn which MTRs are consistent with the data
and hence which values of the parameters of interest are also consistent with the data.

To do so, we assume the MTRs are polynomials in u1 and u2, where we allow the MTRs
to differ across covariate cells:

md(u1, u2, x) =

Kd1∑
k1=0

Kd2∑
k2=0

αdk1k2xu
k1
1 u

k2
2

This allows us to write expected outcomes given judge assignment and treatment as a
simple linear function of calculable regressors. In particular, we have that

E[Y | D=d, Z=z,X=x] =
1

Pdxz

∫
u∈Udxz(ρ)

md(u1, u2, x)dF (u1, u2)

=

Kd1∑
k1=0

Kd2∑
k2=0

αdk1k2x

∫
u∈Udxz(ρ)

uk11 u
k2
2

Pdxz
dF (u1, u2)

︸ ︷︷ ︸
≡hdk1k2xz(ρ)

where Pdxz is the likelihood that judge z in covariate cell x assigns treatment d and Udxz(ρ)

is the rectangular area in the space of unobservables such that a defendant with covariate x
and index u would receive treatment d if assigned to judge z.23

For each value of ρ, there is a different distribution of U (through F ) as well as a different
mapping between u and treatment (through Udxz(ρ)). This implies a different relationship
between the selection indices u and outcomes, which is summarized by h(ρ). It also suggests
that for each value of ρ, this relationship can be recovered by a simple linear regression of
outcomes on the calculable covariates h:

yidxz =

Kd1∑
k1=0

Kd2∑
k2=0

αdk1k2x(ρ)hdk1k2xz(ρ) + εidxz (12)

To implement our model, we allow the MTRs to vary across each of the six courts in our
data, with the treatment-specific intercepts additionally varying at the year level. We view
this as a middle ground between MTRs that do not vary with X—and thus use cross-court
variation in h to identify the selection parameters of the MTRs—and allowing the MTRs to
vary flexibly by court-year.24

This means that there are 6|D|((Kd1 +1)(Kd2 +1)−1)+ |D||X| parameters, and |D||X||Z|
moments. There are therefore many more moments than parameters, and α(ρ) is point-

23Specifically, Unxz(ρ) = [g1(z, x), 1]× [0, 1], Ucxz(ρ) = [0, g1(z, x)]× [g2(z, x), 1], and Upxz(ρ) = [0, g1(z, x)]×
[0, g2(z, x)].

24The assumption of some separability on the MTRs is common practice in the applied MTE literature
as this expands the region of identification of the outcome functions (Cornelissen et al., 2016). However, we
emphasize that we do not use separability to identify the first stage.
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identified for each value of ρ if the standard regression rank condition is satisfied.
As discussed in the previous section, our objects of interest are functions of the MTRs

and ρ. Letting θ(α, ρ) represent a generic parameter of interest (e.g., β(n,c)→p in (11)), for any
value of ρ we can calculate this parameter as θ

(
α(ρ), ρ

)
. However, since ρ is not identified

from the data, there are a range of possible values of θ that will be consistent with the data.
To summarize these values, we take the union of values of θ across different plausible values
of ρ as our identified set (Kamat, Norris and Pecenco, 2023). Formally, the identified set is

Θ =
{
θ0 : θ0 = θ

(
α(ρ), ρ

)
for some ρ ∈ P

}
.

Because h is a nonlinear function of ρ that must be calculated using numerical quadrature,
we estimate the identified set by calculating h for values of ρ over a finite-size grid. For each
ρ we then estimate (12) and use these estimates to calculate θ. We then take the smallest and
largest values of θ across this grid as the lower and upper bounds on the parameter of interest.

5.4 Connection to other approaches

A number of recent papers have considered identification of multiple treatment effects in
settings with either additional data on fallback options (Kirkeboen, Leuven and Mogstad,
2016) or instruments that vary in multiple dimensions (Mountjoy, 2022). We lack data on
outside options and have only a single-dimensional discrete instrument—the assigned judge—
so we cannot directly apply either of these approaches.

The Arteaga (2021) study of the effect of parental incarceration on child outcomes also
considers the threshold selection model in (7). We make several additional contributions.
First, we clarify which assumptions on potential outcomes give rise to this model and connect
it to other popular choice models. Second, because of data limitations, Arteaga (2021) uses the
model only to motivate 2SLS regressions of outcomes on instrumented incarceration among
the sample of convicted defendants, controlling for judges’ conviction propensity. In contrast,
we show how the same choice model can be used to estimate a variety of additional treatment
effects, including 2SLS-weighted effects of conviction relative to both incarceration and case
dismissal, as well as other policy-relevant treatment effects.

Our approach shares some similarities with Humphries et al. (2023), which also considers a
setting with three treatments and examiner instruments. Their idea is that one might be able
to use tools from the industrial organization literature to transform the single-dimensional
judge assignment into a multi-dimensional instrument and then apply Mountjoy (2022) to
point-identify the treatment effects. However, as we show in Appendix A7, their approach
relies on a strong separability condition where a special class of regressors varies within judge
and affects decisions for all judges equally. Since it is unclear what regressors might satisfy
this non-standard and difficult-to-test assumption, it’s not clear why imposing homogeneity on
judge decision-making is necessarily an improvement over assuming homogeneity in treatment
effects, the typical approach used with multiple-treatment 2SLS. It also means that in the usual
best-case scenario of unconditionally randomly assigned judges and no additional covariates—
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or of judge effects that are nonseparable in the covariates—their model is not identified.
When their identification assumptions are satisfied, separability allows point-identification

of the first stage, and as a result point-identification of treatment effects. These estimated
treatment effects should lie inside the bounds produced by our approach, resulting in more
informative conclusions for the researcher. In Appendix A7, we use our data to explore this
testable implication, and, as a result, the credibility of the separability assumption. We first
estimate a version of their baseline model as faithfully as possible, using the same choice
model, functional forms, identifying regressors, outcome model, and estimands. We then
show how one can adopt our first stage identification strategy to their model and estimate
a partially-identified specification that differs only in not using the additional regressors for
identification. The baseline estimates fall outside the bounds in many subsamples, indicating
that the Humphries et al. (2023) identifying restrictions on the covariates are not satisfied in
our setting and can result in substantively different conclusions.

Finally, our approach is also closely related to the single-index model (Rivera, 2023), which
is a special case of our model when ρ=1. Our bounds therefore encompass the single-index
estimates.

5.5 Implementation details

In our main analysis, we assume that F is a normal copula with correlation ρ, although as
a robustness check we also allow U to be distributed in a logistic family. We further assume
that ρ ≥ 0, so that defendants who have unobservable characteristics that make them more
likely to be convicted also have unobservable characteristics that make them more likely to
be incarcerated. This accounts, for example, for the fact that defendants with more serious
criminal records may be more likely to be convicted (because prosecutors are more motivated
to obtain a guilty verdict) and that they are more likely to serve an incarceration sentence
(because sentences tend to get longer with one’s criminal record (Shen et al., 2020)).

As previously discussed, we calculate g at the judge-year level. This means that for each
value of ρ, there is a single set of thresholds g that satisfies the treatment shares in (8)-(10).
We assume that the MTRs are partially separable, with a court-year-specific intercept and
terms in u that vary by court. Since judges work in only one court, this means we exploit only
within-court-year variation in judges’ decisions to identify the selection terms.

We assume that the c and p MTRs are second-order in each dimension of u, although we
impose that the coefficient αd22x = 0 for numerical stability. Similarly, the n MTR is assumed
to be second-order in u1 but constant in the u2 dimension, since all cross-judge variation in u2

relevant to the n MTR is driven by changes in the u1 dimension. We calculate the regressors
h(ρ) using numerical integration, then estimate α(ρ) and the corresponding object of interest
for each ρ ∈ {0, 0.2, ..., 1}. We report the upper and lower bounds across ρ. For inference, we
estimate the covariance matrix of the estimates over ρ using 200 bootstrap draws, and then
use Bei (2023) to construct a confidence interval on the union bound.

We study two main types of parameters. First, we study the 2SLS-weighted net complier
effects discussed in Section 5.2. To maintain comparability with the 2SLS results in Section 3,
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we use a result from Blandhol et al. (2022) to calculate the weights on the compliance groups
implied by (1)-(2), and report effects using these weights. Second, we study a number of policy-
relevant treatment effects, which imply different weights on the effects of each compliance
group.

6 Results

6.1 Treatment effects vary over the range of admissible selection models

As discussed in the previous section, the observed information on judge treatment propensities
is not sufficient to point-identify the selection equation. As a result, many objects of interest are
only partially identified. We illustrate this in Figure 2, which shows the 2SLS-weighted effect
of conviction relative to dismissal (∆n→c from (6)) on the number of charges filed over the next
five years for different values of ρ. When ρ is small, conviction has almost no effect on charges.
As ρ gets larger, however, and the selection model gets closer and closer to a single-index model,
the estimated effects rise, approaching 0.07. For ρ=1, which corresponds to the single-index
model, however, the estimated effect shoots down to a statistically significant −0.18. Since
the data do not provide any guidance on which ρ is the correct one, we conclude that ∆n→c
is between −0.18 and 0.07. Incorrectly imposing a relationship between the unobservables
presents a real risk; for example, if we had simply used a single-index model of treatment, we
would have concluded that convictions substantially decrease future crime even though the
data are equally consistent with positive effects.

6.2 Model fit

We approximate the MTRs using the flexible polynomials discussed in Section 5.5. These
functions impose that the potential outcomes are smooth in the indices that govern selection,
and place implicit restrictions on the slopes of potential outcomes across the space of u.

Our methodology allows us to directly assess whether these MTRs accurately approximate
parameters of interest, such as the 2SLS estimates β̂2SLSincar. For each ρ, we denote the estimated
MTRs α̂ and the corresponding model-based incarceration 2SLS estimate as β2SLSincar(α̂), and
bootstrap the null distribution of β̂2SLSincar − β2SLSincar(α̂) using i.i.d. draws from the set of cases.

Figure A1 shows the estimated p-values for models of both the number of charges and an
indicator for any charge within 5 years over the range of ρ. The 2SLS estimates are similar
to their structural analogs; for example, the 2SLS estimate for any charge is -0.058 while the
structural estimate β2SLSincar(α̂) with ρ=0 is -0.044.

Since the choice model is not correct for all values of ρ, we expect that the model might
reject for some values. The p-values are close to zero for ρ=1, consistent with the single-
index model being too restrictive. For other values of ρ, the p-values are higher, in the range
of 0.20 for the binary outcome and 0.03 for the continuous outcome. We conclude that the
polynomials do a good job of approximating the underlying MTRs.
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6.3 Decomposing the 2SLS estimands

Except in restrictive choice models, the existence of multiple treatments poses complications
for the interpretation of binary 2SLS estimates. As we discuss in Section 3.2, the incarceration
2SLS estimand, for example, is a weighted combination of the effect of incarceration relative
to both conviction and dismissal, as well as monotonicity and exclusion violations. While
researchers commonly make assumptions that preclude some or all of these effects, there is
typically no empirical guide to evaluating their existence and magnitude.

Our approach instead allows us to directly estimate each of these components and evaluate
the threat that exclusion and monotonicity violations pose to interpretation. The following
equation shows the decomposition of the incarceration 2SLS estimate on the number of charges
over the five years following case filing using (6). For each treatment effect and weight, we
report the upper and lower bounds on the model estimates across ρ, except for the model-based
2SLS estimand, for which we report the ρ=0 estimate.

−0.241︸ ︷︷ ︸
β2SLS
incar

= [0.977, 1.000]︸ ︷︷ ︸
φc→p

[−0.246, −0.202]︸ ︷︷ ︸
∆c→p

+ [0.000, 0.054]︸ ︷︷ ︸
φn→p

[0.220, 2.523]︸ ︷︷ ︸
∆n→p

+ [−0.034, 0.000]︸ ︷︷ ︸
mono. violations

+ [−0.003, 0.005]︸ ︷︷ ︸
exclusion violations

(13)
The equation shows that 2SLS does a remarkably accurate job of estimating the causal

effect of incarceration. It also reveals which fallback option is relevant: for each value of ρ, the
weight is almost entirely on ∆c→p, the effect of incarceration relative to conviction. The weight
on the n→p effect is always smaller than 0.054, and so the weighted effect of incarceration
relative to the alternatives β(n,c)→p, at [−0.213,−0.202],25 almost perfectly coincides with the
estimated c→p effect of [−0.246,−0.202]. Furthermore, the exclusion and monotonicity terms
are tightly bounded around zero, meaning that the 2SLS estimate almost exactly reflects
β(n,c)→p.

We also decompose the conviction 2SLS estimand into its constituent parts. This estimate
results from instrumenting for conviction (either p or c) with judge indicators. In our choice
model there are no c→n or p→n defiers, and so the conviction 2SLS estimand can be de-
composed into a weighted combination of (1) the treatment effect of p relative to n, (2) the
treatment effect of c relative to n, and (3) exclusion violations between c and p:

0.189︸︷︷︸
β2SLS
convic

= [0.000, 0.237]︸ ︷︷ ︸
φn→p

[0.486, 2.897]︸ ︷︷ ︸
∆n→p

+ [0.768, 1.005]︸ ︷︷ ︸
φn→c

[−0.189, 0.017]︸ ︷︷ ︸
∆n→c

+ [0.111, 0.311]︸ ︷︷ ︸
exclusion violations

(14)

This decomposition reveals that the conviction 2SLS estimate of 0.189 does not accurately
reflect the causal effect of conviction on future criminal behavior, nor any other causal effect.
While the majority of the weight is on n→c compliers, in contrast to the 2SLS estimate these
effects are mostly negative, ranging from -0.189 to 0.017. The effect for the n→p group is
larger, at [0.486, 2.897], but the weight on these compliers is small enough that the combined
βn→(c,p) effect is no larger than 0.078.26 The exclusion violations are bounded between 0.111

25This estimand is shown in Equation 11.
26To see this, note we can rewrite β2SLS

convic = βn→(c,p) + exclusion violations.
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and 0.311 and statistically significant. Thus, a naive use of 2SLS would overstate the increases
in crime resulting from conviction.

Importantly, the forms of bias we find in the 2SLS estimates are not easily corrected by more
typical methods. For example, Panel C of Table 2 shows that simultaneously instrumenting
for incarceration and treatment using 2SLS barely changes the estimated effect of conviction
from 0.084 to 0.088. One would therefore continue to erroneously over-estimate the effect of
convictions on future criminal behavior

6.4 Characterizing the compliers

The last section decomposed the effect of incarceration into the weighted sum of two counterfactual-
specific effects: incarceration relative to dismissal (d) or conviction (c). These effects differ
profoundly, with one reducing recidivism and the other increasing it. While this difference
might arise from the fallback options themselves, it might also reflect differences in the types of
individuals in these groups, such as the extent of their criminal record. In this section we more
fully characterize the compliers by calculating averages of pre-existing case and demographic
variables for each group, using the same complier weights and identification strategy as our
treatment effects.27 By shedding light on who the compliers are for these separate margins,
this analysis is also valuable for understanding which cases judges disagree upon and, hence,
which individuals may be marginal to local policies. We investigate differences in fallback
options in later sections.

Table 3 reveals that the individuals in different compliance groups face different types of
charges and have varying criminal histories. Panel A focuses on the severity of the case, which
we measure using the mean sentence that defendants receive when they are charged with the
same offense in the same court. A longer expected sentence corresponds to an offense with a
longer statutory penalty or a higher risk of conviction, both of which indicate a more serious
crime. Among felony cases, incarcerated defendants whose cases would otherwise be dismissed
(n→p compliers) face an expected [277, 480] days behind bars, while incarcerated defendants
with a conviction fallback (c→p compliers) face only [207, 225] days. Similarly, Panel B shows
that n→p compliers also have longer criminal records than c→p compliers, with [2.64, 4.73]

and [2.55, 2.72] prior offenses, respectively.28

We observe the same pattern among misdemeanor defendants in column (2), where n→p

defendants are charged with more serious offenses and have a longer criminal record. In
particular, their expected sentence is [11, 14] days versus only [8, 10] days for c→p compliers,
and they have at least 2.08 prior offenses while c→p compliers have [1.67, 2.11]. We view this
as consistent with our model of court decision-making, where n→p compliers are more likely

27To estimate these complier averages we parameterize the mean characteristics C for each marginal defen-
dant as a polynomial approximation of E[C|U1=u1, U2=u2, X=x]. Since this differs from our MTR speci-
fication only in being constant across treatments, we can then use our baseline approach to estimate mean
characteristics using the same complier weights. Because of the skew in the characteristics we describe, we cap
outcomes at the 99th percentile for each type of case and use linear rather than quadratic MTRs, which are
more sensitive to outliers.

28While the identified sets overlap, for each value of ρ the n→p group has more prior offenses than the c→p
group.
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to have been charged with serious offenses that come with long prison sentences but are only
marginally guilty.

We also characterize the n→c compliers. Compared to n→p defendants, who are on the
margin between dismissal and incarceration, they have fewer previous charges ([1.57, 2.18]

versus [2.64, 4.73] for felony defendants) and a shorter expected sentence ([175, 242] versus
[277, 480] days). These differences, which we also see among misdemeanor defendants, are
again consistent with our model of judge decision-making: defendants with a marginal case
against them are caught between dismissal and incarceration if they have been accused of a
more serious crime, and caught between dismissal and a non-carceral sentence when they have
been charged with a more minor offense.

Finally, Panel C displays the effect of incarceration on sentence length for each fallback
option. Consistent with the more serious offenses that n→p compliers have been charged with,
the marginal incarceration increases sentences by [390, 1012] days for felony defendants whose
cases would otherwise be dismissed, but by a more modest [384, 388] for defendants who would
otherwise be convicted. In contrast, we see no such difference in effects on sentence length for
misdemeanor defendants, and the identified sets overlap. The marginal sentence is also much
shorter for misdemeanor defendants, at no more than 44 days, previewing the relatively small
role that incarceration will have on defendants relative to conviction for this group.

6.5 Effects of conviction and incarceration on future criminal behavior

Table 4 presents the effects of incarceration and conviction on the total number of future
charges (Panel A) and convictions (Panel B) over the five years following case filing. The
first column, which like (13) studies misdemeanor and felony defendants together, reveals that
nearly all of the variation in the judge instruments shifts defendants between c and p; the
weight on the c→p effect is at least 0.977 across values of ρ. This allows a precise estimate of
between 0.202 and 0.246 future charges and [0.233, 0.278] convictions averted for each marginal
incarceration.

In contrast, the treatments that lead to a conviction, ∆n→p and ∆n→c, are relatively im-
precisely estimated, and we can’t reject that there is no effect of either treatment. While
this might suggest that convictions are not important determinants of criminal justice out-
comes, this is driven by two different factors: relatively low precision for felony cases caused
by limited across-judge variation in conviction propensity, and smaller effects of a conviction
for defendants who already have a criminal record. When we focus on the populations more
likely to be affected by a conviction, and for whom we have more statistical power, we see
more precisely estimated and deleterious effects of conviction.

Effects for felony defendants
Column (2) of Table 4 reports the effects of conviction and incarceration for felony defendants.
At least 99.1% of the weight is on the c→p effect, and for this group the table reveals that
incarceration reduces the number of future charges by between 0.345 and 0.379 over the five
years following filing.
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To understand the possibly mechanical role of incapacitation, Figure 3 plots the effects
of incarceration on both days spent locked up (whether resulting from the focal or non-focal
case) in each year and on the cumulative number of charges filed against the defendant since
case filing. Incarceration results in an additional 200 days spent incapacitated in the first year,
but this effect quickly fades to only 25 extra days in the third year. The effects on cumulative
charges mirror this trajectory, with a big decline in the first year and a smaller decline in
the second year. Over the next five years, after the incapacitation effect has faded, there is
essentially no further effect of initial assignment to incarceration on the number of charges.
This indicates that incapacitation rather than changes to post-release behavior likely explains
nearly all of the effects of incarceration relative to conviction, consistent with similar effects
documented in prior work (Rose and Shem-Tov, 2021).29

Unfortunately, the effects of conviction on future behavior for felony defendants are rel-
atively imprecisely estimated because of limited variation in conviction propensities, and we
cannot reject a null of no effect on future charges (Panel A) or convictions (Panel B). This
judicial conformity suggests that for felony courts, reducing conviction rates is likely to require
interventions before the judges are assigned the cases, possibly at the level of the prosecutor
making charging decisions or changes to law (Agan, Doleac and Harvey, 2022).

Effects for misdemeanor defendants
As discussed in Section 6.4, misdemeanors carry much shorter sentences than felonies. This
results in relatively little incapacitation for incarcerated compliers who would otherwise be
convicted. Figure 3 shows that even in the first year after case filing, incarceration for misde-
meanor c→p compliers results in only 30 additional days behind bars. In the second year, the
effect is indistinguishable from zero. Consistent with incapacitation being the driving factor
for c→p defendants—all of whom are convicted no matter their judge assignment—we observe
no effect of incarceration on the number of future charges for any of the years following the
case.

We can rule out impacts of misdemeanor incarceration larger than 0.15 crimes in either
direction, or about 10% relative to the dependent variable mean number of crimes, at the 95%
level.30 We can thus clearly reject that the impacts are the same for felony incarceration and
reject medium-sized increases in future charges. Given that millions of people are jailed each
year (Zeng, 2020), this causal estimate provides new and informative results relevant to the
impacts of the criminal justice system more broadly.

Despite the limited effects for misdemeanor incarceration, convictions could still affect
individuals’ future outcomes. A criminal record might make it harder to gain employment
(Pager, 2003), and since police officers and prosecutors can see the record of convictions,
future criminal justice system involvement might be more likely to result in charges. This
might be especially true for n→p compliers, who have been accused of more serious crimes

29Table 3 reports that incarceration results in an average sentence of [384, 388] days for c→p compliers,
implying that a year’s sentence averts [0.345, 0.379]/([384, 388]/365) = [0.325, 0.360] new offenses.

30Column (3) in Table 2 shows the mean number of charges over the 5-year period after case filing for
misdemeanor defendants.
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but whose guilt is marginal.
Panel A of Figure 4 plots the effects of incarceration relative to dismissal for the n→p

compliers. The sentence length is relatively short; while days incapacitated increases by about
60 in the first year, there is no effect in any subsequent year. However, despite the modest
degree of incapacitation, the number of future charges increases as a result of treatment.
By year 5, being assigned to p rather than n has increased the number of future charges by
[0.563, 4.101], and the number of future convictions by [0.786, 4.987].

To investigate the relative roles of incapacitation versus receiving a criminal record, we use
our model to decompose the effect on future charges for the n→p compliers into the effect of
moving from n to c, and the effect of moving from c to p. Using superscripts to denote the
compliance group and subscripts for the effect, this reveals that

[0.563, 4.101]

(0.094,6.292)︸ ︷︷ ︸
∆n→p

= [1.88, 3.93]

(0.80,6.24)︸ ︷︷ ︸
∆n→p
n→c

+ [−1.33, 0.191]

(−3.04,3.40)︸ ︷︷ ︸
∆n→p
c→p

In other words, the n→p effect is entirely driven by conviction relative to dismissal, which
increases the number of future charges by somewhere between 1.88 and 3.93. There is no effect
of jail time conditional on conviction.

We also study the effect of conviction for n→c compliers. Since this group has typically
been accused of somewhat less serious crimes and would likely be less impacted by social stigma
than n→p compliers, there may be less scope for a conviction to affect future behavior. This is
exactly what we find: Panel B of Figure 4 reveals no statistically significant effect of conviction
for n→c compliers on cumulative charges in any of the first seven years following case filing.
However, it does increase the number of future convictions by [0.222, 0.557] after five years
(Panel B of Table 4). This is much smaller than the n→p effect of [0.786, 4.987], consistent
with the less serious offenses that n→c compliers face.

The positive effects of conviction on future crime have several interesting implications.
First, the high rates of misdemeanor conviction in the US imply that the increases in crime and
future conviction we find may be particularly important. Second, the larger effects on future
convictions than on future charges are consistent with police, prosecutors, and judges treating
defendants more harshly in future cases as a result of a past conviction, and suggest that initial
inequities in criminal justice contact can lead to persistently differential treatment. Finally, our
results suggest that convictions—rather than incarceration or some other aspect of criminal
prosecution—may be the key mechanism behind recent work showing that a prosecutor’s
decision to proceed with a case increases future crime (Agan, Doleac and Harvey, 2022).

More evidence on the central role of convictions in misdemeanor cases comes in column
(5) of Table 4. In this column we restrict to misdemeanor defendants who have never been
convicted of a felony offense, and so might be more profoundly affected by a conviction.31

Consistent with this, we see that the lower bounds on the n→p and n→c effects are larger
31We also examine the effect of criminal justice sanctions for never-previously-convicted felony defendants

in column (4). However, given the imprecision of our estimated conviction effects for felony defendants, we
cannot rule out even relatively large changes in behavior.
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for this group than for all misdemeanor defendants. Weighting by the relative size of the two
groups, conviction causes an additional [0.165, 0.817] charges to be filed over the next five
years. This is composed of [0.851, 3.336] for n→p defendants, and [0.165, 0.351] for the n→c

compliers, with the smaller effect for the noncarceral sentence reflecting the less serious nature
of the charges. The effects on the number of future convictions (Panel B) are slightly larger
than those on future charges for both compliance groups, again consistent with more punitive
behavior from future criminal justice officials.32

6.6 Discussion

The results in this paper help clarify the respective effects of conviction and incarceration,
and unify the existing literature. As we discuss in the introduction, recent research has found
very different effects of these treatments, with incarceration relative to conviction on felony
charges reducing future crime and the conviction-related impacts of criminal prosecution in-
creasing it. Thus, although both of these treatments increase the intensity of criminal justice
contact and the associated degree of social stigma, they have opposite effects on recidivism.
Whether this difference in effects is broadly generalizable across the United States, or stems
from methodological or external validity distinctions, is not clear from existing work.

Our study provides a simple explanation for this pattern of results. Using a single research
design and setting, we replicate the qualitative patterns of the prior literature. Conviction on
minor offenses—like those studied in Agan, Doleac and Harvey (2022) and Mueller-Smith and
Schnepel (2021)—increases future crime, while incarceration on felony charges decreases future
crime. Since felony incarceration affects recidivism only during the period of incapacitation,
and there is no effect of relatively short misdemeanor sentences on future crime, we view these
results as most consistent with incarceration affecting future crime only through incapacitation.
The deleterious long-term effects of criminal prosecution therefore appear to arise mostly from
the conviction and the resulting criminal record. Consequently, heterogeneity across locations,
research designs, or other contextual features do not seem to contribute to the disparate results
in the field.

Our novel estimates of the effect of misdemeanor incarceration on recidivism also shed
light on a recent literature that has studied the effect of misdemeanor pre-trial detention
(Gupta, Hansman and Frenchman, 2016; Dobbie, Goldin and Yang, 2018; Heaton, Mayson
and Stevenson, 2017). This literature has typically found that pre-trial detention increases
recidivism, but it is unclear if this is because the detention itself is criminogenic or because
it indirectly affects recidivism by increasing conviction rates. Our finding that misdemeanor
convictions increase future recidivism—but that incarceration does not—neatly explains these
results.

Finally, this work complements two previous papers that use similar data to study the
externalities of incarceration on children and siblings (Norris, Pecenco and Weaver, 2021) and

32Charges that do not lead to a conviction will typically be visible to police in the same local area. However,
convictions will be visible more widely and are regarded as more serious than simply being charged (Agan,
Doleac and Harvey, 2022).
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the impacts of incarceration on earnings for defendants (Garin et al., 2023). We find that in a
2SLS regression with incarceration as a treatment, the monotonicity and exclusion violations
are small, strengthening the causal interpretation of this prior work. Our approach also pro-
vides further evidence that the 2SLS estimands reflect the effect of incarceration relative to a
counterfactual of conviction (instead of dismissal).

6.7 Policy effects

In the previous section, we reported effects of conviction and incarceration for individuals
weighted by their response to the changes in the judge instruments. While these weights pro-
vide a useful benchmark, they do not necessarily capture populations affected by particular
policy changes (Heckman and Vytlacil, 2005). In this section, we directly study the effects
of policies that change judge behavior, including policies that induce responses along both
conviction and incarceration margins. As our previous 2SLS-weighted results concord closely
with the qualitative patterns of the literature, the policy impacts we study may also be gen-
eralizable.

We focus on two types of policy reforms. First, local changes make small reductions to
judge thresholds g1(z) and g2(z). We view these as approximating what would happen if judges
became more lenient with respect to conviction or sentencing, respectively. Greater conviction
leniency could arise from a higher evidentiary standard or greater willingness of prosecutors
to drop cases where they viewed the evidence as marginal. Sentencing leniency could arise
from reforms to sentencing guidelines that made probation the presumptive sentence for a
wider range of defendants. We estimate the effects of greater conviction leniency by adjusting
each judge’s g1 threshold by 0.01, reassigning treatment with the new threshold, and using the
estimated MTRs to predict outcomes under the counterfactual policy. Similarly, we predict the
effect of greater incarceration leniency by decreasing g2 by 0.01 for each judge and estimating
outcomes under the new treatment assignment.

Second, we study global policy changes that eliminate either conviction or incarceration.
We estimate the effect of these policies by reducing the g1 (respectively, g2) threshold to
zero for each judge and calculating outcomes under the new treatment assignment with the
estimated MTRs. Importantly, these policy effects do not take into account general equilibrium
responses and so may overstate the benefits of these policies. Nonetheless, they help illustrate
the possible effects of larger, non-marginal policy changes.

Effects for felony defendants
Panel A of Table 5 reports the effects of each policy change for felony defendants. Consistent
with the 2SLS effects, both marginal increases in sentencing leniency as well as banning incar-
ceration increases the number of offenses committed by the defendants over the following five
years. The first row reports that the marginal defendant who would be spared incarceration
by increasing sentencing leniency will commit an additional 0.356 to 0.66 crimes as a result of
the policy change, and be convicted in an additional 0.256 to 0.609 cases. Similarly, banning
incarceration would reduce the incarceration rate from 28.9% to 0% and increase the number
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of future charges by [0.085, 0.295] per defendant (or [0.294, 1.021] per affected person) even
before accounting for any general equilibrium effects.

Although these results mean that expanding sentencing leniency would increase crime,
they do not consist of a full cost-benefit analysis. In particular, prisons are expensive; a year
of incarceration in Ohio costs approximately $26,500 in 2015 dollars (Mai and Subramanian,
2017). We estimate that the marginal incarceration in this policy change is for [500, 513] days,
implying a cost per averted future charge of somewhere between $55,002 and $104,621.33

This is higher than the $20,472 estimated cost of the average crime, although this comparison
abstracts from the relationship between averted future charges and averted future crime (Miller
et al., 2021).34

Effects for misdemeanor defendants
Panels B and C of Table 5 study the effect of increased leniency for misdemeanor defendants
and never-previously-convicted misdemeanor defendants, respectively. In line with the small
incapacitation effects we observed in Section 6.5, the bounds on the effect of increased sen-
tencing leniency staddle zero for both populations. While not directly-crime reducing, this
type of leniency would still reduce jail populations without large increases in future crime.

Expanded leniency in conviction is more promising. The second rows of Panel B and C re-
port the effect of marginally increasing conviction leniency for misdemeanor defendants. They
reveal that on average it would have no effect on the number of future charges for the overall
misdemeanor defendant (bounds of −0.112 to 0.215), and slightly (although not statistically
significantly) reduce charges by 0.022 to 0.247 for the never-previously-convicted population.
The benefits are slightly larger in terms of avoiding future convictions; the marginal never-
previously-convicted beneficiary would see 0.224 to 0.489 fewer convictions due to this policy
change.

These benefits are somewhat smaller than would be expected from the 2SLS estimates.
A closer examination of the compliance patterns reveals why. For each population, 80-100%
of the beneficiaries of increased conviction leniency would otherwise be convicted but not
incarcerated. As we discussed in Section 6.5, the benefits of case dismissal are smaller for
the n→c population than the n→p population. This substantially reduces the benefits of
expanding leniency across the board, and suggests that more effective policy reforms would
focus on defendants accused of more serious offenses who would otherwise be incarcerated,
since the benefits disproportionately accrue to this group.

We also study the effect of larger increases in conviction leniency. While these estimates
do not account for changes in general deterrence, they suggest that the effect of case dismissal
for non-marginal defendants are substantially higher. For example, dismissing all cases would
reduce the number of future convictions by [0.858, 0.869]/0.53 = [1.62, 1.64] for the average
affected misdemeanor defendant, compared to [0.052, 0.449] for the defendant affected by a
marginal increase in leniency. Policies that encourage diversion for misdemeanor defendants,

3326500× ([500, 513]/365)/[0.356, 0.660] = [55002, 104621].
34Miller et al. (2021) reports costs in 2017 dollars; we use the CPI to adjust to 2015 for comparability.
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particularly those without a long criminal record, therefore can potentially decrease crime and
future involvement with the criminal justice system.

Effects of homogenizing judge behavior
Finally, we study the effect of homogenizing judge behavior. A large literature has noted
disparities in conviction and incarceration rates across judges, and Ohio has moved to make
more sentencing data available to judges with the explicit goal of reducing these disparities
(Ohio Criminal Sentencing Commission, 2021). Harmonizing judge sentencing behavior can
have important impacts on outcomes if their effects are asymmetric—for example, if harsh
punishments by the least lenient judges cause some people to get caught up in recurring
interactions with the criminal justice system.

We implement this counterfactual by assigning all judges in each x cell the same g thresh-
olds, picking them so that the overall treatment shares remain the same. We then study the
effects on outcomes relative to the status quo. Table 5 reveals that these policies would have
only a limited effect on outcomes. Across courts and types of defendants, there is no effect of
homogenizing judge behavior on any of the outcomes, although for misdemeanor defendants
the bounds typically barely include zero. This suggests policies to harmonize judge behavior
will not directly affect recidivism, although there are likely benefits to increasing certainty in
the legal system.

6.8 Robustness

Measurement horizon
Our main results report effects after 5 years. We choose this horizon because it is long enough
that several years have elapsed since most defendants have been released (see Figure 3), but
short enough that the sample size remains large. As a robustness exercise, we also estimate
these effects after 7 years. Table A4 contains the incarceration 2SLS-weighted effects (analo-
gous to Table 4), and Table A5 reports policy effects after 7 years (analogous to Table 5). While
the edges of the bounds are sometimes slightly smaller or larger, the substantive conclusions
are unchanged.

Binary recidivism
Our baseline approach has been to measure the effects of treatment on the number of future
charges and convictions. However, some recent work has also studied the effect on binary
recidivism (Jordan, Karger and Neal, 2023). For comparability, in Table A1 we re-estimate
our main results (Table 4) using binary measures of recidivism. The results are qualitatively
similar: incarceration tends to decrease future criminal justice involvement, while conviction
tends to increase it, particularly for first-time misdemeanor defendants.

Measure of prior criminal justice contact
One key population of interest in this study is defendants with no prior felony conviction,
who we find are more strongly affected by convictions (and the resulting criminal record) than
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the average defendant. In Table A2 we report results using the smaller sample of defendants
with no prior felony or misdemeanor convictions. The results are slightly less precise but
largely comparable. Summarizing the conviction effect ∆∗n→c as the effect of c relative to n
for the weighted n→c and n→p complier groups, the effect on future charges for never-felony-
convicted misdemeanor defendants is [0.165, 0.813] compared with [0.173, 0.712] for defendants
who had never been convicted of either a felony or misdemeanor.

Weights used in estimand
Our main results (Table 4) use the implied weights from a regression instrumenting for in-
carceration in constructing the estimand. In Table A3, we report the same effects using the
implied weights from a regression instrumenting instead for conviction. This aggregation allows
us to study a population more responsive to differences across judges with varying conviction
propensities, and provides a sense of heterogeneity in results when compared with the results
using incarceration weights. Comparing effects on charges within 5 years, of most note, the ef-
fect of felony incarceration relative to conviction is now a positive though insignificant [0.069,
0.133], and we can reject that this estimate overlaps with the incarceration 2SLS-weighted
estimate of [-0.379, -0.345]. This finding highlights important heterogeneity in the effects of
incarceration and is inconsistent with constant treatment effects in this population. While we
also see differential responses in effects of p relative to n, the effects of c relative to n appear
consistent across the complier populations.

Parametric family for distribution of unobservables
We also consider alternative distributions for the unobservables. Our baseline model uses a
copula based on the bivariate normal distribution. However, we also consider using a copula
that is instead based on a distribution with logistic marginals and that allows for correlation
between the two dimensions (Ali, Mikhail and Haq, 1978). This is a useful comparator because
of the prevalence of the logistic distribution in standard models of discrete choice. As in our
baseline analysis, we allow the correlation parameter to take values between 0 and 1.

Table A6 shows the effects of conviction and incarceration on the number of future charges
and convictions, analogously to Table 4. The results are similar, although the bounds are
somewhat tighter using the AMH copula. For example, conviction relative to no punishment
increases the number of future charges by [0.165, 0.351] for never-convicted misdemeanor de-
fendants in our baseline analysis, but by [0.293, 0.343] using the AMH copula.

7 Conclusion

Estimating the causal effect of criminal justice sanctions is difficult due to non-random as-
signment of treatments. Examiner designs use variation from randomly assigned judges as
instrumental variables to study the effect of a particular sanction, such as incarceration, on in-
dividual outcomes. However, simple 2SLS models typically cannot account for judges choosing
between three or more treatments—such as dismissal, conviction and incarceration—thereby
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biasing estimates.
We build a new framework to handle these and other similar situations that feature dis-

crete instruments and multiple treatments. We introduce a choice model appropriate for judge
settings, link it to an equivalent selection model, and develop a novel estimation framework to
recover 2SLS-weighted combinations of treatment effects stripped of monotonicity and exclu-
sion violations. We then go beyond these estimands to isolate the component treatment effects
and to extrapolate to well-defined alternative policies. Our approach, which requires only ex-
aminer instruments for identification, allows for more flexible substitution patterns—and thus,
more credible estimates—than existing alternatives.

We use this model to study the effect of conviction and incarceration in the three largest
counties in Ohio. We reconcile a string of recent results in the economics of crime literature
studying these treatments. Consistent with prior work, we find that incarceration decreases
future crime through an incapacitation effect, while misdemeanor convictions increase subse-
quent criminal justice involvement. One contribution of this paper is to show that these results
hold in a single setting and research design, assuaging external validity concerns of prior work.
We go beyond this by decomposing previously studied treatment effects into margin-specific
effects and by providing new estimates of less-studied sanctions of the criminal justice sys-
tem, including misdemeanor incarceration. In so doing, we highlight the important differences
in the effect of sanctions in misdemeanor and felony courts, emphasizing the importance of
further work on this topic.

Most substantively, this paper has important implications for policy. We find that courts
could implement reforms that both increase leniency and decrease crime, particularly if they
target misdemeanor defendants with short criminal records and who face relatively serious
charges.

The approach used in this paper may be useful in other settings. For example, foster
care caseworkers first decide whether to remove a child from their parents, and then whether
to place them with relatives or non-relatives. Other settings may require slightly different
choice models. Disability examiners may affect claimants through both time to decision and
benefits receipt (Autor et al., 2011), which could be modeled as two separate dimensions that
examiner’s behave monotonically over. Corporate bankruptcy judges decide between Chapter
11, Chapter 7, and case dismissal, which may be best described by a multinomial decision
model. Our approach of partially identifying the first stage and estimating outcomes using
marginal treatment effects can still be applied in these cases with an appropriate adjustment
to the choice model.
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Figures

Figure 1: Illustration of threshold crossing model for judge decisions
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(b) Compliance patterns D(z)→D(z′) for ρ=0
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(c) Compliance patterns D(z)→D(z′) for ρ=0.8
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Panel A illustrates treatment assignment decisions for a single judge. Panels B and C show the compliance
patterns

(
D(z)→D(z′)

)
for judges z and z′ for ρ ∈ [0, 0.8]. Judge z assigns 80, 10, and 10% of defendants to

treatment n, c, and p, respectively. Judge z′ assigns 20, 60, and 20%. As ρ changes so does the share of each
response group; in particular there are p→c compliers for ρ = 0 but not ρ = 0.8. Similarly there are c→p
compliers for ρ = 0.8 but not ρ = 0. The white regions in Panels B and C denote values of U where changing
the judge from z to z′ does not affect the realized treatment.
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Figure 2: Effect of conviction relative to dismissal (∆n→c) on 5-year number of charges, by value of ρ
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This figure shows the estimated effect of conviction relative to dismissal on the number
of subsequent charges over the five years following the focal case filing. We display these
estimates for ρ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1].
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Figure 3: Effect of incarceration relative to conviction on days incarcerated and number of charge

(a) Felony cases
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(b) Misdemeanor cases
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This figure shows the estimated effects of incarceration relative to conviction (∆c→p) on
the number of days spent incarcerated and number of new charges in each year after
case filing. The darker areas denote the range of estimates arising from choice models
with selection parameters ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The lighter areas denote the edge
of 95% confidence intervals for the endpoints estimated with Bei (2023).
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Figure 4: Effects of conviction on days incarcerated and number of charge for misdemeanor defendants

(a) Incarceration relative to dismissal (∆n→p)
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(b) Conviction relative to dismissal (∆n→c)
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This figure shows the estimated effects of incarceration relative to dismissal (∆c→p) and
conviction relative to dismissal (∆n→c) on the number of days spent incarcerated and
number of new charges in each year after case filing. Restricted to misdemeanor defen-
dants only. The darker areas denote the range of estimates arising from choice models
with selection parameters ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The lighter areas denote the edge
of 95% confidence intervals for the endpoints estimated with Bei (2023).
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Tables

Table 1: Defendant characteristics and judge severity

Mean char. by court
Rel. with

judge propensities

All Felony Misd. Incar. Convic.

Panel A: Defendant characteristics
Male .77 .80 .75 .0084 .037∗

(.008) (.022)
White .39 .34 .43 -.00077 -.023

(.010) (.026)
Age 31.99 32.24 31.73 -.14 -.71

(.224) (.566)
Drug crime .29 .34 .23 -.016 .031

(.010) (.023)
Violent crime .19 .15 .22 .0074 -.0036

(.008) (.021)
Property crime .29 .38 .19 .013 -.036

(.010) (.023)
Sex crime .05 .04 .06 .0033 .0011

(.005) (.012)
Family crime .14 .07 .21 -.00097 .028

(.006) (.020)
Other crime .28 .27 .28 -.0097 .013

(.010) (.024)
Offense mean sentence (days) 99.66 193.02 6.97 3 5.7

(3.688) (6.314)
Log mean sentence 3.00 4.84 1.16 .014 -.066

(.025) (.076)
Number of previous charges 2.17 2.53 1.80 -.088 .29

(.079) (.202)
Joint p-value .76 .35

Panel B: Treatment outcomes
Not guilty (D=0) .30 .13 .47
Conviction (D=1) .51 .59 .43
Incarceration (D=2) .20 .29 .10
Sentence cond. on incar. (days) 464.56 614.76 37.71

Observations 638,684 323,046 315,638
Defendants 375,255 188,681 186,574
Columns (1)-(3) report the sample means for all courts, felony courts, and misdemeanour
courts corresponding to this characteristic, respectively. Columns (4)-(5) report the coefficient
from a regression of the characteristic on judge mean incarceration and conviction severity,
respectively. Joint p-value comes from an F-test of joint significance of the characteristics
on the instrument. Controls include year by court fixed effects. Cases may include multiple
charges of different types, so the sum of types of charges sums to more than 1. Charge sentence
measures offense severity by calculating the leave-out average sentence for the most serious
charge. Standard errors clustered at the defendant level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2: 2SLS effects of conviction and incarceration on 5-year number of charges

Never prev. convicted

All Felony Misdemeanor Felony Misdemeanor
(1) (2) (3) (4) (5)

Panel A: Effect of incarceration

Incarceration (Dp) -0.362∗∗∗ -0.484∗∗∗ -0.131∗ -0.391∗∗∗ -0.033
(0.043) (0.052) (0.075) (0.076) (0.089)

Dependent mean 1.616 1.581 1.653 0.977 0.933
J 455.641 260.824 176.636 142.374 104.340
p-value 0.000 0.000 0.000 0.637 0.041
Observations 638,684 323,046 315,638 143,657 167,258

Panel B: Effect of conviction

Conviction (Dcp) 0.084 0.519∗∗ -0.076 0.352 0.040
(0.108) (0.203) (0.128) (0.215) (0.127)

Dependent mean 1.616 1.581 1.653 0.977 0.933
J 542.857 352.219 179.481 168.304 104.712
p-value 0.000 0.000 0.000 0.133 0.039
Observations 638,684 323,046 315,638 143,657 167,258

Panel C: Effect of both

Incarceration (Dp) -0.363∗∗∗ -0.475∗∗∗ -0.128∗ -0.382∗∗∗ -0.031
(0.043) (0.053) (0.075) (0.078) (0.090)

Conviction (Dcp) 0.088 0.315 -0.054 0.151 0.036
(0.109) (0.208) (0.129) (0.221) (0.127)

Dependent mean 1.616 1.581 1.653 0.977 0.933
J 455.876 259.098 175.981 142.540 104.504
p-value 0.000 0.000 0.000 0.611 0.034
Observations 638,684 323,046 315,638 143,657 167,258
This table reports IV estimates of the effect of incarceration, conviction, and both on cu-
mulative charges up to 5 years post filing. Columns are split by sample, with column (1)
including all cases, column (2) including felony cases, column (3) including misdemeanor
cases, column (4) including felony cases for defendants with no prior felony convictions,
and column (5) including misdemeanor cases for defendants with no prior felony convic-
tions. The endogenous variables are instrumented with the judge identity and all speci-
fications include court-year fixed effects. Standard errors in parentheses and clustered at
individual level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Characterizing the complier groups

Never prev. convicted

Fel. Misd. Fel. Misd.
(1) (2) (3) (4)

Panel A: Complier offense mean sentence (in days)
Incarceration rel. to conviction (c→p) [207.2, 224.9] [8.1, 9.6] [221.9, 253.5] [7.6, 9.1]
Incarceration rel. to not guilty (n→p) [277.0, 479.5] [10.9, 14.3] [296.8, 545.6] [10.6, 13.8]
Conviction rel. to not guilty (n→c) [175.0, 242.3] [7.6, 8.9] [168.2, 242.3] [7.7, 8.8]

Panel B: Complier mean number of previous charges
Incarceration rel. to conviction (c→p) [2.545, 2.717] [1.670, 2.106] [0.607, 0.626] [0.676, 0.897]
Incarceration rel. to not guilty (n→p) [2.643, 4.726] [2.075, 2.781] [0.823, 1.301] [0.684, 0.862]
Conviction rel. to not guilty (n→c) [1.572, 2.176] [1.301, 1.515] [0.774, 0.860] [0.500, 0.509]

Panel C: Effect on sentence length (in days)
Incarceration rel. to conviction (∆c→p) [384.0, 388.0] [20.7, 24.0] [398.9, 401.9] [20.5, 23.4]
Incarceration rel. to not guilty (∆n→p) [390.3, 1011.8] [-36.9, 43.7] [392.1, 482.4] [-50.3, 42.7]
This table reports complier characteristics for different complier groups, aggregated using the weights from a 2SLS
regression with incarceration as the treatment and judge dummies as the instruments. MTRs are approximated by a
linear MTRs in u1 and u2.
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Table 4: Effects of conviction and incarceration on future criminal justice outcomes

Never prev. convicted

All Fel. Misd. Fel. Misd.
(1) (2) (3) (4) (5)

Panel A: Number of charges over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.246, -0.202] [-0.379, -0.345] [-0.021, 0.071] [-0.333, -0.265] [-0.037, 0.024]

(-0.322, -0.143) (-0.461, -0.269) (-0.147, 0.159) (-0.426, -0.195) (-0.122, 0.097)

Incarceration rel. to not guilty (∆n→p) [0.220, 2.523] [-1.016, 0.018] [0.563, 4.101] [-4.237, -0.068] [0.851, 3.336]
(-0.124, 5.192) (-6.481, 4.449) (0.094, 6.292) (-11.125, 2.562) (0.377, 5.959)

Conviction rel. to not guilty (∆n→c) [-0.185, 0.071] [-0.304, -0.087] [-0.124, 0.151] [-0.187, 0.015] [0.165, 0.351]
(-0.315, 0.217) (-0.617, 0.167) (-0.305, 0.365) (-0.417, 0.227) (-0.016, 0.492)

Panel B: Number of convictions over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.278, -0.233] [-0.364, -0.323] [-0.150, -0.063] [-0.272, -0.190] [-0.074, -0.013]

(-0.356, -0.164) (-0.454, -0.235) (-0.318, 0.096) (-0.383, -0.088) (-0.259, 0.164)

Incarceration rel. to not guilty (∆n→p) [0.331, 3.054] [-1.280, -0.063] [0.786, 4.987] [-0.949, 0.278] [1.166, 3.870]
(0.026, 6.159) (-7.947, 5.386) (0.073, 8.076) (-9.108, 7.211) (0.302, 7.333)

Conviction rel. to not guilty (∆n→c) [0.105, 0.358] [-0.379, -0.033] [0.222, 0.557] [-0.141, 0.088] [0.411, 0.625]
(-0.040, 0.521) (-0.769, 0.226) (0.005, 0.829) (-0.470, 0.313) (0.189, 0.884)

Weight on c→ p effect [0.977, 1.000] [0.991, 1.000] [0.947, 1.000] [0.989, 1.000] [0.966, 1.000]
Weight on n→ p effect [0.000, 0.054] [0.000, 0.037] [0.000, 0.086] [0.000, 0.043] [0.000, 0.074]
Weight on n→ c effect [0.065, 0.088] [0.030, 0.045] [0.131, 0.169] [0.042, 0.058] [0.124, 0.152]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with incarceration
as the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2 as specified in
Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.
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Table 5: Policy effects after 5 years

Change in treatment shares Effects on outcomes

n c p N. charges N. conv.

Panel A: Felony defendants
Incarceration leniency (g2 ↓) 0.000 [0.009, 0.010] [-0.010, -0.009] [0.356, 0.660] [0.256, 0.609]

(0.248, 0.910) (0.137, 0.892)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.007] [-0.003, 0.000] [-0.032, 0.195] [-0.013, 0.128]
(-0.269, 0.361) (-0.276, 0.406)

No incarceration (g2 = 0) 0.000 0.289 -0.289 [0.085, 0.295] [0.102, 0.270]
(-0.001, 0.349) (0.016, 0.316)

No conviction (g1 = 0) 0.874 -0.585 -0.289 [-9.848, -9.799] [-4.721, -4.662]
(-18.950, -0.693) (-16.024, 6.645)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.201, 0.134] [-0.204, 0.095]

(-0.292, 0.320) (-0.307, 0.294)

Panel B: Misdemeanor defendants
Incarceration leniency (g2 ↓) 0.000 [0.005, 0.010] [-0.010, -0.005] [-0.265, 0.190] [-0.174, 0.383]

(-0.393, 0.369) (-0.346, 0.621)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.008] [-0.002, 0.000] [-0.112, 0.215] [-0.449, -0.052]
(-0.305, 0.382) (-0.682, 0.140)

No incarceration (g2 = 0) 0.000 0.103 -0.104 [-0.038, 0.030] [-0.033, 0.047]
(-0.053, 0.055) (-0.051, 0.079)

No conviction (g1 = 0) 0.530 -0.427 -0.104 [-0.395, -0.386] [-0.869, -0.858]
(-1.027, 0.245) (-1.528, -0.199)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.024, 0.252] [-0.041, 0.354]

(-0.137, 0.336) (-0.211, 0.468)

Panel C: Never-convicted misdemeanor defendants
Incarceration leniency (g2 ↓) 0.000 [0.005, 0.010] [-0.010, -0.005] [-0.193, 0.123] [-0.186, 0.252]

(-0.328, 0.314) (-0.392, 0.530)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.008] [-0.002, 0.000] [-0.247, -0.022] [-0.489, -0.224]
(-0.420, 0.134) (-0.697, -0.032)

No incarceration (g2 = 0) 0.000 0.087 -0.087 [-0.021, 0.010] [-0.018, 0.025]
(-0.035, 0.031) (-0.036, 0.049)

No conviction (g1 = 0) 0.528 -0.441 -0.087 [-0.447, -0.436] [-0.731, -0.715]
(-1.030, 0.148) (-1.323, -0.123)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.008, 0.197] [-0.054, 0.264]

(-0.151, 0.283) (-0.213, 0.356)

Table reports the effects of a number of policy changes on recidivism. We analyze marginal changes, which shift judges’ thresholds g
by 0.01, as well as global changes. The change in treatment shares is the change from the given policy. The change in outcomes is
rescaled by the number of defendants whose treatment is affected by the policy change for the marginal changes to assist in readability.
Bounds are in square brackets and the outer edges of 95% confidence intervals in parentheses are calculated using Bei (2023).
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Appendix

A1 Implications of plea bargaining for choice model

An important aspect of our empirical setting is the prevalence of plea bargaining. As we discuss
in Section 2.2, many cases end before a trial with the defendant pleading guilty to at least some
charges. In such cases, the prosecutor and defense attorney enter a joint recommendation to
the judge, who determines an appropriate sentence. In this section, we theoretically analyze
the effect of plea bargaining on our choice model. We assume that our choice model is satisfied
before the introduction of plea bargaining and then study whether the introduction of pleas
derails the model. Interestingly, we find that although pretrial bargaining changes the case
outcome for some individuals, the same monotonicity conditions continue to characterize the
decisions.

We adopt a Nash bargaining framework with full information. Institutionally, plea bar-
gaining can occur at any time prior to trial and often occurs shortly before a scheduled trial
date. Consequently, the full information framework is a realistic depiction of the state of in-
formation after pre-trial discovery, which requires the prosecution to provide the defense with
almost all of their collected materials, including all materials they will use in the trial and any
exculpatory evidence.1

Nash bargaining model

We suppose that the court must decide between three outcomes, i ∈ {0, 1, 2}, which correspond
to case dismissal, conviction without incarceration, and incarceration. For case outcome i, the
defense attorney receives utility αi and the prosecutor receives utility βi. We assume that the
punishment becomes more severe in i, and so α0 ≥ α1 ≥ α2 and β0 ≤ β1 ≤ β2.

We assume that the defense attorney and prosecutor Nash bargain over the outcome, with
the fallback option of having a trial occurring under bargaining breakdown. In case of a trial,
the judge will decide the outcome and the defense attorney and prosecutor will pay a fixed
cost α∗ ≥ 0 and β∗ ≥ 0, respectively.

This is a full information setup, so the participants are aware the judge would choose option
k(z) if negotiations break down. The participants will then agree on the following outcome:

argmax
i

Vi
(
k(z)

)
, Vi

(
k(z)

)
=
(
αi − (αk(z) − α∗)

)(
βi − (βk(z) − β∗)

)
where Vi

(
k(z)

)
is the Nash product under judge z.

Plea bargaining does not cause monotonicity violations

LM requires that judges behave monotonically when deciding between conviction (either c or
p) and n, and also monotonically between p and c when deciding between those two choices.

1An important source of asymmetric information can be the whereabouts or status of witnesses. As this
too typically becomes known prior to the trial, this information also becomes reflected in plea bargains.
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We begin by assuming the judges behave according to LM, and then show that the decisions
after plea bargaining will continue to obey monotonicity. To emphasize that the defendants
and prosecutors preferences are ordered, we index treatment with {0, 1, 2} rather than {n, c, p}
as in the main paper.

We first consider the requirement that when choosing between options 2 and 1, we have
that

D∗2(z) ≥ D∗2(z′) or D∗2(z) ≤ D∗2(z′) .

where D∗2(z) is a dummy variable indicating that judges z chooses treatment 2 when he is
choosing between options 1 and 2. Without loss of generality, we assume that D∗2(z) ≥ D∗2(z′).
Then, for some new set of decisions under plea bargaining, which we denote D̃, monotonicity
is violated if there is a case where

D∗2(z) > D∗2(z′) (A1)

D̃∗2(z) < D̃∗2(z′). (A2)

(A1) implies that k(z) = 2 and k(z′) = 1 and (A2) implies that V2

(
k(z)

)
< V1

(
k(z)

)
and

V2

(
k(z′)

)
> V1

(
k(z′)

)
. Beginning with the first inequality, and using the Nash products

resulting from (A1), we find

V2

(
k(z)

)
<V1

(
k(z)

)
α∗β∗ <α∗β∗ + (α1 − α2)β∗ + (β1 − β2)α∗ + (α1 − α2)(β1 − β2)

0 <(α1 − α2)β∗ + (β1 − β2)α∗ + (α1 − α2)(β1 − β2)

2(α2 − α1)(β2 − β1) >(α2 − α1)β∗ + (β2 − β1)α∗ + (α2 − α1)(β2 − β1)

0 >(α2 − α1)β∗ + (β2 − β1)α∗ + (α2 − α1)(β2 − β1) (A3)

α∗β∗ >α∗β∗ + (α2 − α1)β∗ + (β2 − β1)α∗ + (α2 − α1)(β2 − β1)

V1

(
k(z′)

)
>V2

(
k(z′)

)
where (A3) follows because αi is monotonically decreasing and βi is monotonically increasing
in i, so 2(α2−α1)(β2−β1) < 0. The last line directly contradicts (A2). This shows that when
judges are choosing whether to incarcerate (conditional on conviction), plea bargaining is not
enough to overturn monotonicity. When plea bargaining moves the likelihood of defendants
being treated in a particular direction, it does so monotonically for all judges.

Next, we show that if D12(z) ≥ D12(z′), then D̃12(z) ≥ D̃12(z′). Suppose not. Then,
D12(z) > D12(z′) and D̃12(z) < D̃12(z′). We consider the case k(z) = 2; the proof for when
k(z) = 1 is almost identical.
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When k(z) = 2 and k(z′) = 0, the Nash products are

V2

(
(k(z)

)
= α∗β∗ (A4)

V1

(
(k(z)

)
= α∗β∗ + (α1 − α2)β∗ + (β1 − β2)α∗ + (α1 − α2)(β1 − β2) (A5)

V0

(
(k(z)

)
= α∗β∗ + (α0 − α2)β∗ + (β0 − β2)α∗ + (α0 − α2)(β0 − β2) (A6)

V2

(
(k(z′)

)
= α∗β∗ + (α2 − α0)β∗ + (β2 − β0)α∗ + (α2 − α0)(β2 − β0) (A7)

V1

(
(k(z′)

)
= α∗β∗ + (α1 − α0)β∗ + (β1 − β0)α∗ + (α1 − α0)(β1 − β0) (A8)

V0

(
(k(z′)

)
= α∗β∗ (A9)

Monotonicity will be violated if D̃(z) = 0 and either D̃(z′) = 1 or D̃(z′) = 2. If D̃(z′) = 2,
then we find a contradiction analogously to the two-option case. If D̃(z′) = 1 , then we have
that V1

(
z(k′)

)
> V0

(
z(k′)

)
, implying

(α1 − α0)β∗ + (β1 − β0)α∗ + (α1 − α0)(β1 − β0) > 0 (A10)

(α0 − α1)β∗ + (β0 − β1)α∗ < (α1 − α0)(β1 − β0) (A11)

(α0 − α1)β∗ + (β0 − β1)α∗ < 0 (A12)

where the third line follows because αi is increasing in i and βi is decreasing.
Similarly, D̃(z) = 0 so V0

(
z(k)

)
> V1

(
z(k)

)
and

(α0 − α1)β∗ + (β0 − β1)α∗ + (α0 − α2)(β0 − β2)− (α1 − α2)(β1 − β2) > 0

(α0 − α1)β∗ + (β0 − β1)α∗ + (α0 − α1)(β0 − β1) + (α0 − α1)(β1 − β2) + (α1 − α2)(β0 − β1) > 0

Given that each of the interaction terms is negative (because αi and βi are ordered in opposite
directions), by combining with (A12) we arrive at a contradiction.

To conclude, if judge decisions obey LM without plea bargaining, in this simple model they
continue to obey LM with plea bargaining. While more complicated models that incorporate
private information (e.g., Silveira (2017)) can produce violations of latent monotonicity, this
section shows that when private information is limited, so will violations of LM.
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A2 Interpreting the 2SLS estimand

In this section we provide a decomposition of the 2SLS estimand into its constituent effects.
To maintain clarity, we initially abstract away from covariates. However, after deriving the
result, we write out our estimating equation in the index representation and include covariates
as in our baseline specification.

The building blocks of our analysis are the compliance groups defined by the intersection
of their treatment assignment under each judge {

⋂
z∈Z

D(z)}. For compliance group ` define

the measure of that group as π`, and the average treatment effect of s versus t as ∆`
st =

E[Y (s) − Y (t) | C`] where C` denotes membership in group `. Using D`j as shorthand for
D(zj) for compliance group `, we decompose the binary incarceration 2SLS estimand as

β2SLSincar =
J∑
j=1

λj
E[Y |zj ]− E[Y |zj−1]

E[Dp|zj ]− E[Dp|zj−1]
(A13)

=
J∑
j=1

λj
E[Dp|zj ]− E[Dp|zj−1]

(∑
`

∆`
pc1[D`j=p,D`,j−1 =c]π` +

∑
`

∆`
pn1[D`j=p,D`,j−1 =n]π`+∑

`

∆`
cp1[D`j=c,D`,j−1 =p]π` +

∑
`

∆`
cn1[D`j=c,D`,j−1 =n]π`+∑

`

∆`
np1[D`j=n,D`,j−1 =p]π` +

∑
`

∆`
nc1[D`j=n,D`,j−1 =c]π`

)
=
∑
`

φ`pc∆
`
pc + φ`pn∆`

pn + φ`cp∆
`
cp + φ`cn∆`

cn + φ`np∆
`
np + φ`nc∆

`
nc

where λj is the classic 2SLS weight from Imbens and Angrist (1994) arising from instrumenting
for incarceration (treatment p) with judge indicators, and

φ`st = (φ̃`st − φ̃`ts)1[φ̃`st − φ̃`ts > 0]

φ̃`st =

J∑
j=1

λj
E[Dp|zj ]− E[Dp|zj−1]

1[D`j=s,D`,j−1 =t]π`

This decomposition of β2SLSincar exploits the fact that for each pair of treatments s and t, the
2SLS-weighted judge assignment induces a compliance group either from s to n or vice versa.
By construction, φ`st is always weakly positive and, when it is strictly positive, represents the
weight on the treatment effect for individuals who move from treatment t to s when they are
assigned to the jth rather than the j − 1th most severe judge.

We then define the average treatment effect for individuals induced from treatment t to s
as

∆st =

∑
` φ

`
st∆

`
st∑

` φ
`
st

(A14)

and the weight as φst =
∑

` φ
`
st. This lets us rewrite the 2SLS estimand, which is discussed in
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the main text as (6), as

β2SLSincar = φpc∆pc + φpn∆pn + φcp∆cp + φnp∆np + φcn∆cn + φnc∆nc (A15)

Representation in index form
In this subsection we re-derive (A13) using index notation and accounting for covariates. This
provides the components in (11).

In the case where instruments are saturated in covariates, we can decompose the 2SLS
estimand as a weighted combination of covariate-cell-specific LATEs. Letting j index judges
and ordering them up to J(x) in each cell c by propensity to incarcerate, these weights are
equal to

wx =

P [x]

(∑J(x)
j=0 P [zj | x]

(
E[Dp|zj , x]− E[Dp|x]

)2
)

∑
x′ P [x′]

(∑J(x′)
j=0 P [zj | x′]

(
E[Dp|zj , x]− E[Dp|x′]

)2
)

Using ∆st(u, x) ≡ ms(u, x)−mt(u, x) to denote the effect of s relative to t for a u-indexed
individual in covariate cell x, and Dj,x(u) to denote the treatment decision of judge j in cell
x, we can then decompose the 2SLS estimand as

β2SLSincar =
∑
x

wx

J(x)∑
j=1

λjx
E[Y |zj , x]− E[Y |zj−1, x]

E[Dp|zj , x]− E[Dp|zj−1, x]
(A16)

=
∑
x

wx

J∑
j=1

λjx
E[Dp|zj , x]− E[Dp|zj−1, x]

×

(∫
∆pc(u, x)1[Djx(u)=p,Dj−1,x(u)=c]f(u) + ∆pn(u, x)1[Djx(u)=p,Dj−1,x(u)=n]f(u)+

∆cp(u, x)1[Djx(u)=c,Dj−1,x(u)=p]f(u) + ∆cn(u, x)1[Djx(u)=c,Dj−1,x(u)=n]f(u)+

∆np(u, x)1[Djx(u)=n,Dj−1,x(u)=p]f(u) + ∆nc(u, x)1[Djx(u)=n,Dj−1,x(u)=c]f(u) du
)

=
∑
x

wx

∫
φpc(u, x)∆pc(u, x) + φpn(u, x)∆pn(u, x) + φcp(u, x)∆cp(u, x) + (A17)

φcn(u, x)∆cn(u, x) + φnp(u, x)∆np(u, x) + φnc(u, x)∆nc(u, x) du

where λjx are the within-x 2SLS weights and analogously to (A13),

φst(u, x) = (φ̃st(u, x)− φ̃ts(u, x))1[φ̃st(u, x)− φ̃ts(u, x) > 0]

φ̃st(u, x) =

J(x)∑
j=1

λjx
E[Dp|zj , x]− E[Dp|zj−1, x]

1[Djx(u)=s,Dj−1,x(u)=t]f(u)
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We can then define the weights and margin-specific treatment effects as

∆s→t =
∑
x

wx

∫
[mt(u, x)−ms(u, x)]ws→t(u, x) du

ws→t(u, x) =
φts(u, x)∑

xwx
∫
φts(v, x) dv

where the treatment effects reflect the weighted effect of compliers who move from s to t as a
result of judge assignment. Since the compliance groups depend on the distribution of u, note
that the weights and treatment effects are themselves functions of F . See (6) and (11), where
we use these estimates to construct our target parameters.
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A3 Instrumenting for multiple treatments at once

In this section, we discuss the interpretation of the 2SLS estimand when the researcher si-
multaneously instruments for both conviction and incarceration. We show that the estimands
reflect a combination of the effects of different treatments and for different complier groups,
defying a causal interpretation even under restrictive patterns of compliance. We conclude
that the results of these regressions should be interpreted as causal effects only under the
assumption of constant effects.

We consider the following 2SLS specification:

Yi = β0 + βc1[Di=c] + βp1[Di=p] + εi (A18)

1[Di=c] = αcj + ei (A19)

1[Di=p] = αpj + ui (A20)

where βc and βp are the coefficients of interest and α represents the judge indicators used as
the instruments.

By Frisch-Waugh-Lovell, these estimands can be decomposed as

βc =

Cov(Y,Pc)
Var(Pc) −

Cov(Pc,Pp)
Var(Pc)

Cov(Y,Pp)
Var(Pp)

1− ρ2
cp

βp =

Cov(Y,Pp)
Var(Pp) −

Cov(Pc,Pp)
Var(Pp)

Cov(Y,Pc)
Var(Pc)

1− ρ2
cp

where Pd = E[D=d|Z = j] for each judge j and ρcp ≡ Cov(Pc, Pp)/
√

Var(Pc)Var(Pp) is the
correlation between Pc and Pp.

The expression for βc reveals that the coefficient on the conviction dummy in (A18) is
equal to the coefficient from a 2SLS regression of the outcome on instrumented conviction,
minus the coefficient from a 2SLS regression of the outcome on instrumented incarceration
multiplied by the effect of judge-instrumented conviction on incarceration, all rescaled by a
term involving the correlation between the two treatment propensities.

Analogously to the single-treatment case in Appendix A2, these expressions can be de-
composed into a weighted combination of treatment effects for the compliers corresponding to
compliance group ` across each of the three treatments. In particular, it is easy to use the
arguments in Appendix A2 to show that

βc =
∑
`

φ`cpc∆
`
pc + φ`cpn∆`

pn + φ`ccp∆
`
cp + φ`ccn∆`

cn + φ`cnp∆
`
np + φ`cnc∆

`
nc (A21)

where
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φ`cst = max
(

0, (φ̃`cst − ψcφ̃
`p
st)− (φ̃`cts − ψcφ̃

`p
ts)
)

φ̃`dst =

J∑
jd=1

λdj
E[Dd|zjd ]− E[Dd|zjd−1]

1[D`jd=s,D`,jd−1 =t]π`

and where λdj is the classic 2SLS weight from Imbens and Angrist (1994) arising from instru-
menting for being in treatment d with judge indicators. ψc =

Cov(Pc,Pp)
Var(Pc) is the coefficient from

a regression of judges’ p treatment share on their c treatment share. We sub-index the judge
indices with d to denote that the ordering is treatment-specific. The expression for βp is the
same as that for βc, but using φ`p weights.

The weights in (A21) depend on the underlying compliance patterns and are positive by
construction, but do not necessarily sum to one. This means it is in general not possible
to interpret βc and βp as positively-weighted combinations of treatment effects because of
compliers moving in opposite directions across treatments.

Recent research has investigated conditions under which 2SLS will deliver interpretable
treatments effects. Bhuller and Sigstad (2022) show (Proposition B.8) that one such condition
is the combination of both strict Imbens and Angrist (1994) monotonicity for each treatment
and judge pair, as well as mutual linearity of the judge propensities for treatments c and
p in each other. These conditions are strict, and not satisfied by typical models of judge
decision-making. In particular, our baseline assumption LM does not satisfy the monotonicity
condition and therefore will not deliver a convex combination of treatment effects.

To highlight the issues with 2SLS, we examine in more detail a single-index model of
treatment (Heckman and Vytlacil, 2005; Rivera, 2023). This model is more restrictive than
our baseline model, since it is the special case of LM for ρ=1. Nonetheless, it is not restrictive
enough for 2SLS to return interpretable treatment effects. To fix ideas, a single-index model
assigns treatment in the following way:

Assumption SI (Single Index) For each judge z ∈ Z, treatment is determined by

D(z) =


n if g1(z) < U ,

c if g2(z) < U ≤ g1(z) ,

p if U ≤ g2(z) ,

where U ∼ U [0, 1] and g2(z) ≤ g1(z).

We consider a case with three equally-likely judges who have incarceration and conviction
thresholds of (g2(z), g1(z)) ∈ {(0.25, 0.30), (0.35, 0.75), (0.40, 0.85)}. This generates 5 different
compliance groups (u ∈ {(0.25, 0.30], (0.30, 0.35], (0.35, 0.40], (0.40, 0.75], (0.75, 0.85]}). Ta-
ble A8 shows the treatment assignment for each compliance group under each judge. Changes
in judge assignment increase the severity of criminal justice contact for each compliance group;
moving from judge 0 to 1 moves defendants from n to either c or p, while moving from judge
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1 to 2 moves some defendants from c to p, and other defendants from n to c. However, it does
not satisfy Imbens and Angrist (1994) monotonicity. For example, changing assignment from
judge 1 to judge 2 moves defendants with u ∈ (0.78, 0.85] into treatment c, but defendants
with u ∈ (0.35, 0.40] out of c.

The failure of Imbens and Angrist (1994) monotonicity suggests that 2SLS will not deliver
an interpretable treatment effect. To make this point more precise, in Table A9 we calculate
the weights on each compliance group in a 2SLS regression of outcomes on conviction and
incarceration. The table reveals that the coefficients from (A18) will reflect a combination of
treatment effects for different compliance groups. The coefficient on βp reflects moves from
conviction into incarceration (with a weight of 1.4), but also moves from conviction to dismissal
(two different compliance groups, for a total weight of 1.6). It will also reflect n→c, p→n,
and p→c effects. Under treatment effect heterogeneity, therefore, βp will not correspond to
an effect of incarceration in any meaningful sense.

In fact, it is difficult to find any situation in which the 2SLS coefficients will represent
margin-specific causal effects. Consider the thresholds (g2(z), g1(z)) ∈ {(0.0, 0.0), (0.0, 1.0), (0.5, 1.0)},
which implies judge 0 convicts no one, judge 1 convicts everyone and incarcerates no one, and
judge 2 incarcerates half and convicts the rest. These judges provide possible comparisons
that satisfy the unordered partial monotonicity (UPM) assumption in Mountjoy (2022) and
therefore identify margin-specific effects; for example, comparing outcomes for judge 1 to 0
identifies the n→c ATE, and comparing outcomes for judge 2 to judge 1 identifies a c→p

LATE. They also satisfy Imbens and Angrist (1994) monotonicity. However, 2SLS does not
recover these effects: the weights on the incarceration term φ

lp
st have equal weight of 0.5 on

n→c, c→p, and n→p. As such, the weights do not reflect comparisons of margin-specific
causal treatment effects and additionally include compliance for treatment effects, such as
dismissal to conviction effects, that do not reflect the treatment of interest. This is due to the
nonlinearity of the conditional mean of the p propensity with respect to the c propensity. We
conclude that even in propitious conditions, the coefficients from a multiple-treatment 2SLS
regression may mix effects across non-target compliance groups. This will result in bias when-
ever there are heterogeneous treatment effects, although the degree of bias will vary across
settings.
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A4 Ordered and unordered monotonicity

In this section, we formally compare our choice model to ordered (Angrist and Imbens, 1995),
unordered (Heckman and Pinto, 2018), and single-index (Heckman and Vytlacil, 2005; Rivera,
2023) models.

We first reprise some notation. For each z ∈ Z, let Dcp(z) ≡ 1{D(z) ∈ {c, p}} denote an
indicator for whether the individual is convicted, regardless of being incarcerated or not, and
Dd(z) ≡ 1{D(z)=d} denote an indicator for being in treatment d. This lets us succinctly
define joint monotonicity, which we use as a building block to discuss the other monotonicity
assumptions. For clarity, we drop any conditioning on covariates, but each definition can be
understood as conditional on x’s.

Assumption JM (Joint Monotonicity) For each z, z′ ∈ Z, we have

Dcp(z) ≥ Dcp(z
′) or Dcp(z) ≤ Dcp(z

′) ,

Dp(z) ≥ Dp(z
′) or Dp(z) ≤ Dp(z

′) .

This assumption presumes that judges can be ordered with respect to their decision to
convict (whether or not they incarcerate), and separately by their decision to incarcerate. It
is weaker than both ordered and unordered monotonicity. Specifically, ordered monotonicity
(Angrist and Imbens, 1995) assumes that

Assumption OM (Ordered Monotonicity) For each z, z′ ∈ Z, we have

Dcp(z) ≥ Dcp(z
′) and Dp(z) ≥ Dp(z

′) , or

Dcp(z) ≤ Dcp(z
′) and Dp(z) ≤ Dp(z

′) .

while unordered monotonicity (Heckman and Pinto, 2018) imposes that

Assumption UM (Unordered Monotonicity) For each z, z′ ∈ Z, we have that Assump-
tion JM is satisfied and

Dc(z) ≥ Dc(z
′) or Dc(z) ≤ Dc(z

′) .

While these assumptions may be appropriate for some settings, in many examiner designs
they may impose unrealistically strong restrictions on treatment assignment. To better see the
implications of each of these assumptions, Table A7 displays the response types (D(z), D(z′))

between a pair of judges z, z′ ∈ Z. We focus here on the case where Dcp(z) ≥ Dcp(z
′) as all

the assumptions impose it without loss of generality.
The first row of Table A7 reveals that OM rules out any defier types—if one judge is more

severe in terms of conviction, then each defendant must be more likely to be incarcerated by
her. This is particularly problematic in our setting because judges are instructed to treat the
conviction decision Dcp(z) as separate from the sentencing decision (incarceration conditional
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on being convicted, Dp(z)), so it seems likely that judges might differ in their severity across
those two margins.

An alternative to ordered monotonicity is UM. However, the second set of rows in Table A7
reveals that UM also rules out some natural response patterns. These restrictions arise because
UM disallows two-way flows into and out of a treatment to ensure identification of the complier
shares. Two-way flows with respect to incarceration—i.e., pairs of judges with both n→p types
and p→c types—are particularly natural given that judges might have different orderings of
standards for conviction versus incarceration. UM also precludes two-way flows with respect
to conviction: a pair of judges cannot have both n→c and c→p compliers. This substitution
pattern would be expected if the judges behave like the treatments can be ordered. By
disallowing two-way flows, therefore, UM disallows at least some of the substitution patterns
that are likely to occur in our setting.

A4.1 Single-index choice model

One parsimonious alternative to OM and UM is to require that treatment is determined by
a single unobservable index (Heckman and Vytlacil, 2005; Rivera, 2023). A key advantage of
this model is that it allows the researcher to estimate marginal treatment effects (MTEs) along
this single dimension. However, we show in this section that the single index model rules out
certain compliance patterns that are important in our setting. Furthermore, we provide a new
result that demonstrates that the single-index model is closely related to both OM and UM; if
some of the judges satisfy a particular condition relating to the shares of defendants assigned
to each treatment, then all three models are identical. We take this as further evidence that
OM and UM might be inappropriate for use in examiner designs.

We begin by defining treatment assignment in the single-index model:

Assumption SI (Single Index) For each judge z ∈ Z, treatment is determined by

D(z) =


n if g1(z) < U ,

c if g2(z) < U ≤ g1(z) ,

p if U ≤ g2(z) ,

where U ∼ U [0, 1] and g2(z) ≤ g1(z).

In the single-index model, defendants may be marginal between n and c or between c and
p. However, they can only be marginal between n and p if the judge does not assign any
defendants to c. In practice, since we don’t observe any judges who don’t assign anyone to c,
this amounts to ruling out situations where judges are marginal between finding a defendant
not guilty and incarcerating them. This, in turn, is at odds with accommodating defendants
who face severe charges (and so would be incarcerated if convicted) but are marginal on
whether they will be convicted.

We display the full set of allowable response types under SI in Table A7. The table reveals
that SI also rules out two-way flows in and out of incarceration, another key substitution
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pattern that we seek to accommodate. We conclude that the single-index model is unlikely to
be appropriate in our setting.

While SI may appear to be more restrictive than both OM and UM, there are in fact
deep underlying similarities between the models. To demonstrate this, we focus on JM, which
is weaker than both OM and UM. Building on Vytlacil (2002, 2006), we provide an index
characterization of JM, then demonstrate an important condition under which it is equivalent
to SI.

Proposition A1 Assumption JM is equivalent to

D(z) =


n if U1 > g1(z) ,

c if U1 ≤ g1(z), U2 > g2(z) ,

p if U1 ≤ g1(z), U2 ≤ g2(z) ,

(A22)

for each z ∈ Z, where U1, U2 ∼ U [0, 1] and g1(z) ≥ g2(z), and

P [U1 > g1(z), U2 ≤ g2(z)] = 0 (A23)

P [U1 ≤ g1(z), U2 > g2(z)] = g2(z)− g1(z) (A24)

Furthermore, if for every t ∈ [0, 1] there exists z ∈ Z such that g1(z) = g2(z) = t, then JM is
equivalent to SI.
Proof: see Appendix A5.

Corollary A1.1 If for every t ∈ [0, 1] there exists z ∈ Z such that P [D=n|Z=z] = t and
P [D=c|Z=z] = 0, then OM and UM are equivalent to SI.

Proposition A1 reveals that Assumption JM introduces a sequential threshold crossing
structure on judge decisions: they first assign each individual a rank of not being convicted
(U1) and not being incarcerated (U2), and then convict and additionally incarcerate convicted
individuals with ranks below their thresholds. However, through (A23) and (A24), Proposition
A1 reveals that Assumption JM also introduces an additional restriction on how judges allow
individuals to differ in their rankings across the two decision margins. To better see the content
of this restriction, Figure A3(a) graphically illustrates the inadmissible area of rankings in the
case of a single judge who does not convict any defendants. Here we can see that while
rankings such as (u′1, u

′
2) and (u′′1, u

′′
2) are permitted, those such as (u′′1, u

′
2) or (u′1, u

′′
2) that

increase the rank of one decision margin relative to the other are not. This highlights that the
restriction can imply that whenever a judge assigns an individual a high rank in one margin,
they necessarily must do so in the other.

As illustrated in Figure A3(b), the restriction becomes stronger in the presence of more
judges as the area of inadmissible rankings increases. Proposition A1 sharpens this observation
when there is sufficient continuous variation in judges’ thresholds. It shows that in this case,
Assumption JM imposes a homogeneous rank for the incarceration and conviction margins.
This is a strong restriction on judge behavior. For example, consider an individual plausibly
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guilty of certain petty misdemeanor crimes. For such an individual, judges may assign a high
rank of being convicted but not necessarily incarcerated. A homogeneous rank for the two
decision margins, however, rules out such realistic scenarios. Since JM is weaker than OM and
UM, this also implies that these assumptions also converge to SI.

While there are no judges in our setting who assign no defendants to treatment c, the
above proposition suggests that tests of the validity of SI may shed light on the reasonableness
of models of ordered and unordered monotonicity. In Appendix A6, we show that under SI,
for any characteristic X, the Wald estimands between two judges on the outcomes XDd and
treatments Dd for d ∈ {n, p} are bounded. This follows because the characteristics X of
treatment d individuals are exactly controlled by changes in the treatment share for these
outcome moments in this model. We adopt a semiparametric test developed in Frandsen,
Lefgren and Leslie (2023) designed for the case of judge comparisons and find that we reject
this test for some covariates, indicating that the data appears to be inconsistent with SI.
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A5 Proofs of index representation propositions

A5.1 Proof of Proposition A1

Following Vyltacil (2002), we have that Assumption JM can be equivalently written as

1{Dcp(z) = 1} = 1{U1 ≤ g1(z)} ,

1{Dp(z) = 1} = 1{U2 ≤ g2(z)} ,

where U1, U2 ∼ U [0, 1], and g1(z) = 1− P (D(z) = n) and g2(z) = P (D(z) = p). As

D(z) = p1{Dp(z) = 1, Dcp(z) = 1}+ c1{Dp(z) = 0, Dcp(z) = 1}+ n1{Dcp(z) = 0} ,

the threshold crossing equation in (A22) then directly follows. Next, to obtain the restriction
in (A23) and (A24), observe that since logically P [Dcp(z) = 0, Dp(z) = 1] = 0, it follows that

P [U1 > g1(z), U2 ≤ g2(z)] = 0 . (A25)

Moreover, since P (D(z) = n) + P (D(z) = c) + P (D(z) = p) = 1 and P [D(z) = c] = P [U1 ≤
g1(z), U2 > g2(z)], we have

P [U1 ≤ g1(z), U2 > g2(z)] = g1(z)− g2(z) (A26)

This completes the proof.

A5.2 Proof of Corollary A1.1

Since Z is such that for every t ∈ [0, 1] there exists z ∈ Z such that g1(z) = g2(z) = t, it
directly follows from (A23) and (A24) that

P [U1 > t, U2 ≤ t] = 0 ,

P [U1 ≤ t, U2 > t] = 0,

for all t ∈ [0, 1]. This implies P (U1 = U2) = 1.

A5.3 Proof of Proposition 2

The proof is identical to the first part of that of Proposition A1.
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A6 Testable implications of model assumptions across judges

We show testable implications from the single-index (SI) and latent monotonicity (LM) as-
sumptions on binary judge comparisons. Consider any defendant characteristic X, although
we will assume it ranges between 0 and 1 for simplicity.2 We use expressions for Wald es-
timands over XDp instrumenting for Dp, which provides information on complier charac-
teristics of incarcerated defendants, and over XDn, instrumenting for Dn, providing infor-
mation on dismissed defendants. By examining treatment-specific characteristics of defen-
dants, we isolate treatment margins that are restricted by the underlying model assumptions
and provide bounds for the estimands. We compare judges Z = 1 and Z = 0, and let
pij = P [D(1) = i,D(0) = j].

The Wald estimands can be rewritten as:

γp =
E[XDp|Z = 1]− E[XDp|Z = 0]

E[Dp|Z = 1]− E[Dp|Z = 0]

=
E[X|D(1) = p,D(0) = n]ppn + E[X|D(1) = p,D(0) = c]ppc

ppn + ppc − pnp − pcp

+
E[−X|D(1) = n,D(0) = p]pnp + E[−X|D(1) = c,D(0) = p]pcp

ppn + ppc − pnp − pcp

and

γn =
E[XDn|Z = 1]− E[XDn|Z = 0]

E[Dn|Z = 1]− E[Dn|Z = 0]

=
E[X|D(1) = n,D(0) = p]pnp + E[X|D(1) = n,D(0) = c]pnc

pnp + pnc − ppn − pcn

+
E[−X|D(1) = p,D(0) = n]ppn + E[−X|D(1) = c,D(0) = n]pcn

pnp + pnc − ppn − pcn

The single-index assumption implies

0 ≤ γp ≤ 1

0 ≤ γn ≤ 1.

To see the relation for γp, assume P [Dp|Z = 1] ≥ P [Dp|Z = 0]. This implies gp(1) ≥ gp(0),
which is the sole cutoff threshold for Dp, and consequently, pnp = pcp = 0, i.e. no defiers
move out of treatment p. Finally X is bounded between 0 and 1, so the numerator is bounded
[0, ppn+ppc], establishing the result. For the relation for γd, assume P [Dn|Z = 1] ≥ P [Dn|Z =

0]. This implies gn(1) ≥ gn(0), and consequently ppn = pcn = 0.
The latent monotonicity assumption implies

−∞ ≤ γp ≤ ∞

0 ≤ γn ≤ 1.

2If X has a wider range, the bounds on the Wald estimands we derive simply scale by the size of this range.
In addition, we note that X could be endogenous to the treatment but is not required.
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This model defines the same cutoffs gc as in the single-index case, and consequently ppn =

pcn = 0 for the Dn moments, leading to the relation on γn. For γp, there is no restriction
on compliance types. To see that γp is unbounded, consider a condition in which the first
stage denominator is 0, but the numerator is positive or negative. This is possible given that
pnp + pnc − ppn − pcn ∈ [−1, 1] and the weighted average in the numerator is not restricted
based on the first stage coefficients. Intuitively, multiple judge thresholds control entry into
treatment p under LM, so knowing the share does not restrict the potential for two-way flows
into and out of this treatment across judges.

The above conditions can be tested using the methods developed in Frandsen, Lefgren
and Leslie (2023). This method was designed to test single-treatment IV assumptions for
exclusion and monotonicity violations. It can instead be used to test the implications of
the single-index or latent monotonicity assumptions on the appropriately defined outcome
and treatment moments discussed here, as the between-judge slope conditions are similar.3

A clear benefit of this approach is that the inference procedure is designed to account for
estimation error in the judge propensities.

Table A10 presents results from the semi-parametric “fit” test across court-year cells. The
χ2 test statistics are aggregated across court-year cells to provide a joint test, since the test
statistics and associated DOFs can be summed under the independence assumption. We run
tests with Dn and Dp interacted with two covariates, any past charge and any future charge
over the 5 years post-filing. Columns (1) and (2) show that we cannot reject the test on
the Dn moments for either covariate (p = 1). This moment condition is the only test of the
latent montonicity assumption, and hence the data provides some support for the underlying
assumption.

We also test the Dp moments, which uniquely are implied by the single-index model. Col-
umn (3) shows we reject the test for the variable of any past charge, χ2(DOF ) = 1349(1208), p =

0.005, while column (4) shows we cannot reject for any future charges χ2(DOF ) = 1204(1208), p =

0.53. Rejecting the test on the Dn moments indicates that the data appear inconsistent with
the implications of the single-index assumption. Together, these model implications and asso-
ciated tests provide evidence against the single-index model and instead provide some support
that the data are consistent with the latent monotonicity assumption.

3This test may be conservative as the Frandsen, Lefgren and Leslie (2023) test is designed to bound the
between-judge differences to be -1 and 1 for an outcome with a 0 to 1 range.
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A7 Identification in Humphries et al. (2023)

Another approach to identification of multiple treatment effects in examiner designs is Humphries
et al. (2023), hereafter HOSSD.4 In contrast to the standard examiner assignment design—and
in contrast to our method—their method relies exclusively on covariates for identification of
the first stage. In particular, they use these covariates to identify the coefficients on judge
indicators in a multinomial choice model, and then use these coefficients as instruments in the
second-stage model of Mountjoy (2022), hereafter M22.

In this section, we elaborate on the differences in our approaches, focusing on the first
stage. We then implement their method in our data, as well as a partially identified version
of their approach that differs only in not using covariates for identification. We find that
the HOSSD method produces estimates that often lie outside the semiparametric bounds,
suggesting the identification conditions are not satisfied (in our setting), which can lead to
incorrect conclusions.

A7.1 Identification in HOSSD relies on additional separable regressors

HOSSD uses a multinomial choice model of judge decision-making, where

D(z) = argmax
d∈{n,c,p}

Uidzx (A27)

Uidzx =

0 if d = n,

Wiβdx − gdx(z) + εidzx if d ∈ {c, p}
(A28)

and where the distribution of εidzx is known up to a finite-sized parameter vector of length α.
βdx represents the effect of potentially individual-level covariatesWi on decisions in court-year
x, and gdx(z) represent the judge-court-year-specific thresholds. All models are separately
estimated by court-year x.5

To understand how identification works in their setting, it is informative to simplify their
model to a case with no covariates and a single court-year x, and where judges are uncondi-
tionally randomly assigned. The removal of covariates in similar settings is typically innocuous
as they are uncorrelated to the instruments by design; classic expositions of instrumental vari-
ables (e.g. Imbens and Angrist, 1994) do not even include a discussion of covariates. We can
write the distribution of U as

Uidzx =

0 if d = n,

−gdx(z) + εidzx if d ∈ {c, p}
(A29)

This choice equation gives rise to the following relationship between the judge thresholds
4This note refers to their July 2023 version available here.
5Their specification on page 33 does not include individual controls Wi, but we confirmed they are included

in a discussion with the authors.
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g and the judge-specific choice propensities:

P [D=n|Z=z,X=x] =

∫ gcx(z)

−∞

∫ gpx(z)

−∞
f(u1, u2) du2 du1

P [D=c|Z=z,X=x] =

∫ ∞
gcx(z)

∫ gpx(z)−gcx(z)+u1

−∞
f(u1, u2) du2 du1 (A30)

P [D=p|Z=z,X=x] =

∫ ∞
gpx(z)

∫ gcx(z)−gpx(z)+u2

−∞
f(u1, u2) du1 du2

where F is the distribution of ε. However, from this representation, it is clear that g cannot
be identified unless this distribution is known. Indeed, as in our model, each distribution
F implies a different mapping between the observed choice propensities and thresholds g
that rationalize them. This can be seen more concretely in Figure A2, which takes F as a
normal distribution with unit variances and correlation ρ. For a judge that assigns 30, 20,
and 50% of defendants to treatments n, c, and p, respectively, we plot

(
g1x(z), g2x(z)

)
for each

ρ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]. The judge thresholds g vary considerably with ρ, illustrating that
in the standard no-covariates case, the HOSSD first stage cannot be identified without prior
knowledge of F .

This poses a threat to the interpretation of any such model, because F is precisely the
parameter that governs substitution behavior across judges as well as the existence and size
of the compliance groups. One option—which we pursue in this paper—is to accept that the
first stage is only partially identified and that, in turn, many of the parameters of interest are
also only partially identified. HOSSD instead relies on the existence of an additional set of
regressors to point-identify g under additional restrictive assumptions on the data-generating
process.

These regressors are represented by Wi in (A28). Since they are separable from the judge
thresholds g, they are implicitly assumed to shift each judge’s threshold in index space by the
same amount. Combined with a parametric assumption on the distribution of ε, this allows
identification of all model parameters. For a given court-year, if there are |Z| judges and the
W ’s are discrete with |W | support points, there are 2|Z||W | moments P [D=d|Z=z,W=x]

but only 2(|W | − 1) + 2|Z|+ a parameters, where a represents the number of parameters that
govern F . Without regressors, i.e. when |W |=1, there are more parameters than moments.
Adding even one regressor, in principle, allows identification.

In this light, however, identification in HOSSD should be understood as arising because
of the existence of W and the assumption of separability. This is in contrast to standard
instrumental variables approaches, where W typically consists of stratification cell indicators
motivated by the treatment assignment process and identification is driven by instrument
differences within cells. The selection of W is therefore a key design choice in HOSSD. Un-
fortunately, however, theory provides no guidance on how to choose these variables. This
makes it difficult for the researcher to understand whether any given W satisfies the separa-
bility condition, and to adjudicate between results from models that rely on different W ’s for
identification.
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A7.2 HOSSD estimates lie outside the semiparametric bounds

To understand the implications of HOSSD’s separability assumption, we implement their
method as faithfully as possible using our data. We then compare it to a version of their
approach that does not use covariates for identification, and as a result is only partially
identified. The covariate-identified estimates lie mostly outside the semiparametric bounds,
suggesting that at least in our setting, the identification conditions required by HOSSD are
not satisfied.

We mirror their first stage as described in (A28), estimating mixed logit models where
ε consists of the sum of a standard logistic distribution and a normally-distributed random
effect. We allow the random effects for c and p to be correlated and have unrestricted variances,
as in their preferred specification. X includes number of previous charges, charge type (drugs,
property, sex, violent, family, other), average sentence length of charges, sex, and age. As
in their implementation, the models are estimated separately by court and 3-year groupings,
delivering estimated judge-year coefficients for the middle year.

To estimate the model of outcomes, we apply code from M22 almost directly. We use the
judge-year logit coefficients as instruments for conviction and incarceration. In all regressions,
we control for court-year fixed effects and the same observable characteristics as in the first
stage. The linear regressions are weighted by an Epanechnikov kernel with bandwidth of 3, and
we take the point of evaluation to be the mean of the residualized instruments, all following
HOSSD.

Table A11 presents the results. This method produces: (a) the effect of conviction c

relative to not guilty n, MTEn→c, which they call the “labeling” effect, in columns (1)-(3) and
(b) the effect of c relative to prison p, MTEp→c, which they call the “decarceration” effect, in
columns (4)-(6). In the full sample, column (1) shows large reductions in future charges from
the labeling effect (β = −0.49) and column (4) indicates a large increase in charges from the
decarceration effect (β = 0.38). The effects are broadly similar results for defendants charged
in felony or misdemeanor courts.

Taken at face value, the results from the HOSSD method indicate a highly efficacious
criminal justice system, wherein each additional sanction wields substantial crime-reducing
power. This is surprising and conflicts with our preferred estimates, replicated in columns (2)
and (5) and labeled KNP 2024. In the full sample, the HOSSD method estimates of both the
labeling and decarceration effects are outside of our preferred estimate’s 95% CIs.6 While the
preferred estimates of this paper (the KNP 2024 columns) feature prominent heterogeneity in
the incarceration and conviction effects across felony and misdemeanor court defendants, the
HOSSD method results do not.

The two methods differ in both first stage identification and subsequent treatment effect
identification and estimation. To isolate only the difference in first stage identification, in
columns (3) and (6) we adopt the choice model and M22 approach used in HOSSD while

6Specifically, the overall effect of conviction relative to incarceration estimated here, 0.38, is outside the
bounds of our 95% confidence interval (0.143, 0.322). The estimated conviction effects −0.49 are also outside
the 95% CIs (−0.315, 0.217).
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partially identifying the first stage as in this paper. Similar to their approach, we assume
an unordered choice model with unobservables distributed according to a bivariate logistic
distribution with unit variance marginals and correlation in each court-year x induced by
an unknown θx ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, the association parameter in the AMH copula (Ali,
Mikhail and Haq, 1978). For each value of θ = {θx}x∈X , we identify the judge thresholds
from the data and then apply the M22 method to estimate treatment effects.7 The bounds
are given by the union over the possible values of θ.

Given that this approach imposes fewer assumptions, we expect the HOSSD estimates to
be within the estimated bounds. Instead, the HOSSD estimates are outside the semiparametric
bounds for 5 of the 10 subsamples. We can reject that the estimates are inside the bounds for
4 at the 95% level.8 This indicates that the identification conditions, notably separability, in
HOSSD are unlikely to be satisfied in our setting and may result in incorrect conclusions.

Aside from the issues with first stage identification highlighted above, there are several
additional explanations why the results using the methodology from HOSSD may diverge
from the baseline estimates in this paper. First, the “comparable compliers” assumption of
M22 that is also required in HOSSD may not be satisfied. Tests of this assumption that
are detailed in M22 require additional covariates not used for identification; however, as in
HOSSD, we use nearly every covariate available for identification of the first stage model, with
no obvious candidate to leave for testing. Second, M22 requires continuous variation in the
instruments. Since judges are discrete, it is not clear that these local identification results can
even be applied. Finally, our baseline estimates use 2SLS weights to aggregate effects across
compliers, rather than report the effects for a particular marginal individual as in HOSSD.

7Since there are 114 court-years in our data and 6 possible values of θx in each court-year, directly estimating
treatment effects in each of the 1146 possible realizations of θ is not feasible. Instead, we note the coefficients
from the linear regressions required for M22 are variance-weighted averages of the court-year-specific estimates.
We estimate the weights and coefficients for each of the 6×114 θc-court-years, and then search over θ to minimize
(maximize) the target parameters.

8This test is conservative. Denoting the semiparametric effect as a function of θx as β(·) and the corre-
sponding HOSSD effect as β, in each bootstrap iteration b we calculate the lower bound on the difference as
minθx βb(θx) − βb. We estimate the upper bound in the corresponding way, and use these estimated bounds
across bootstrap samples to construct a 95% confidence interval. Four of ten confidence intervals do not include
zero.
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A8 Appendix Figures

Figure A1: p-values for null of matching 2SLS estimate of effect of incarceration, by ρ
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This figure shows the estimated p-values for a test of the null hypothesis that the struc-
tural model recovers the 2SLS coefficient from a regression of the given outcome on
incarceration, where incarceration is instrumented by judge indicators. Distribution of
2SLS coefficients under null estimated via a boostrap with 200 draws.
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Figure A2: Judge thresholds g in multinomial choice model when U is normally distributed with varying
correlation ρ
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For ρ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1], this graph plots (g1(z), g2(z)) for a judge that assigns 30,
20, and 50% of defendants to treatments n, c, and p, respectively.
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Figure A3: Inadmissable regions space of unobservables under JM
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(b) Two judges z and z′
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This figure displays different regions implied by Proposition A1 for an example with a
single judge z with g1(z) = g2(z) and how the inadmissible region (corresponding to the
shaded gray areas) increases with an additional judge z′ with thresholds equal to half of
those of z. Note that we drop the conditioning on x ∈ X for convenience.
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A9 Appendix Tables

Table A1: Effects of conviction and incarceration on future binary criminal justice outcomes

Never prev. convicted

All Fel. Misd. Fel. Misd.
(1) (2) (3) (4) (5)

Panel A: Charged over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.060, -0.047] [-0.100, -0.083] [0.005, 0.021] [-0.084, -0.062] [-0.006, 0.008]

(-0.077, -0.032) (-0.120, -0.064) (-0.022, 0.037) (-0.115, -0.038) (-0.036, 0.038)

Incarceration rel. to not guilty (∆n→p) [0.143, 0.736] [0.144, 0.704] [0.143, 0.751] [0.097, 1.096] [0.230, 0.832]
(0.034, 1.267) (-0.586, 1.993) (0.031, 1.278) (-0.998, 3.190) (0.079, 1.416)

Conviction rel. to not guilty (∆n→c) [-0.033, 0.020] [-0.052, 0.032] [-0.024, 0.014] [-0.037, 0.029] [0.022, 0.045]
(-0.065, 0.060) (-0.090, 0.100) (-0.074, 0.071) (-0.084, 0.094) (-0.028, 0.106)

Panel B: Convicted over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.066, -0.050] [-0.096, -0.079] [-0.018, 0.003] [-0.083, -0.061] [-0.030, -0.012]

(-0.083, -0.035) (-0.118, -0.059) (-0.047, 0.028) (-0.113, -0.035) (-0.062, 0.013)

Incarceration rel. to not guilty (∆n→p) [0.160, 0.874] [0.133, 0.768] [0.182, 0.921] [0.069, 0.698] [0.237, 0.942]
(0.067, 1.376) (-0.525, 2.062) (0.074, 1.422) (-1.388, 2.784) (0.108, 1.539)

Conviction rel. to not guilty (∆n→c) [-0.005, 0.049] [-0.051, 0.027] [0.018, 0.060] [-0.020, 0.037] [0.057, 0.087]
(-0.034, 0.088) (-0.107, 0.094) (-0.033, 0.117) (-0.086, 0.103) (0.009, 0.142)

Weight on c→ p effect [0.977, 1.000] [0.991, 1.000] [0.947, 1.000] [0.989, 1.000] [0.966, 1.000]
Weight on n→ p effect [0.000, 0.054] [0.000, 0.037] [0.000, 0.086] [0.000, 0.043] [0.000, 0.074]
Weight on n→ c effect [0.065, 0.088] [0.030, 0.045] [0.131, 0.169] [0.042, 0.058] [0.124, 0.152]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with incarceration
as the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2 as specified in
Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.
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Table A2: Effects of conviction and incarceration on future criminal justice outcomes, by prior record

No prev. felony or
misdemeanor convictions No prev. felony convictions

Fel. Misd. Fel. Misd.
(1) (2) (3) (4)

Panel A: Number of charges over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.330, -0.271] [0.002, 0.026] [-0.333, -0.265] [-0.037, 0.024]

(-0.442, -0.166) (-0.117, 0.142) (-0.426, -0.195) (-0.122, 0.097)

Incarceration rel. to not guilty (∆n→p) [-2.770, -0.079] [-0.324, 0.313] [-4.237, -0.068] [0.851, 3.336]
(-10.449, 4.909) (-2.800, 2.155) (-11.125, 2.562) (0.377, 5.959)

Conviction rel. to not guilty (∆n→c) [-0.074, 0.104] [0.173, 0.253] [-0.187, 0.015] [0.165, 0.351]
(-0.314, 0.305) (-0.023, 0.463) (-0.417, 0.227) (-0.016, 0.492)

Conviction effect (∆∗n→c) [-0.125, -0.039] [0.173, 0.712] [-0.652, -0.187] [0.165, 0.813]
(-0.834, 0.756) (-0.004, 1.116) (-1.558, 0.304) (-0.009, 1.223)

Panel B: Number of convictions over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.279, -0.212] [-0.050, -0.039] [-0.272, -0.190] [-0.074, -0.013]

(-0.376, -0.110) (-0.195, 0.099) (-0.383, -0.088) (-0.259, 0.164)

Incarceration rel. to not guilty (∆n→p) [-0.012, 0.354] [0.328, 0.396] [-0.949, 0.278] [1.166, 3.870]
(-7.898, 7.873) (-2.731, 3.388) (-9.108, 7.211) (0.302, 7.333)

Conviction rel. to not guilty (∆n→c) [-0.021, 0.132] [0.275, 0.373] [-0.141, 0.088] [0.411, 0.625]
(-0.267, 0.320) (0.068, 0.606) (-0.470, 0.313) (0.189, 0.884)

Conviction effect (∆∗n→c) [-0.297, -0.015] [0.275, 0.882] [-0.950, -0.043] [0.411, 1.175]
(-1.064, 0.445) (0.089, 1.292) (-1.725, 0.246) (0.203, 1.636)

Weight on c→ p effect [0.992, 1.000] [0.960, 1.000] [0.989, 1.000] [0.966, 1.000]
Weight on n→ p effect [0.000, 0.045] [0.000, 0.078] [0.000, 0.043] [0.000, 0.074]
Weight on n→ c effect [0.050, 0.067] [0.126, 0.158] [0.042, 0.058] [0.124, 0.152]
Weight on combined n→ c effect [0.067, 0.095] [0.158, 0.205] [0.058, 0.085] [0.152, 0.198]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with
as the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2

as specified in Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.

25
Electronic copy available at: https://ssrn.com/abstract=4777635



Table A3: Effects of conviction and incarceration on future criminal justice outcomes, conviction 2SLS-
weighted

Never prev. convicted

All Fel. Misd. Fel. Misd.
(1) (2) (3) (4) (5)

Panel A: Number of charges over next 5 years
Incarceration rel. to conviction (∆c→p) [0.040, 0.252] [0.069, 0.131] [0.017, 0.318] [-0.143, 0.037] [-0.013, 0.224]

(-0.076, 0.347) (-0.145, 0.371) (-0.142, 0.435) (-0.329, 0.317) (-0.201, 0.357)

Incarceration rel. to not guilty (∆n→p) [0.486, 2.897] [0.183, 0.541] [0.591, 4.012] [-4.315, -0.076] [1.002, 4.570]
(0.158, 5.279) (-4.455, 4.821) (-0.004, 6.848) (-9.261, 0.495) (0.575, 7.600)

Conviction rel. to not guilty (∆n→c) [-0.189, 0.017] [-0.223, 0.026] [-0.194, 0.014] [-0.103, 0.058] [0.026, 0.131]
(-0.285, 0.126) (-0.505, 0.219) (-0.365, 0.200) (-0.315, 0.216) (-0.093, 0.302)

Panel B: Number of convictions over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.028, 0.193] [0.145, 0.344] [-0.130, 0.210] [0.060, 0.304] [-0.111, 0.198]

(-0.198, 0.304) (-0.008, 0.669) (-0.352, 0.377) (-0.123, 0.533) (-0.368, 0.369)

Incarceration rel. to not guilty (∆n→p) [0.698, 4.048] [-0.650, 0.382] [0.962, 5.978] [-3.607, -0.009] [1.428, 6.335]
(0.131, 7.406) (-6.437, 5.136) (0.053, 10.364) (-9.614, 2.400) (0.373, 10.820)

Conviction rel. to not guilty (∆n→c) [0.054, 0.254] [-0.248, 0.053] [0.104, 0.328] [-0.033, 0.140] [0.246, 0.342]
(-0.084, 0.411) (-0.563, 0.275) (-0.076, 0.550) (-0.274, 0.318) (0.071, 0.556)

Weight on c→ p effect [0.334, 0.444] [0.316, 0.438] [0.341, 0.446] [0.279, 0.358] [0.268, 0.339]
Weight on n→ p effect [0.000, 0.237] [0.000, 0.366] [0.000, 0.190] [0.000, 0.292] [0.000, 0.160]
Weight on n→ c effect [0.768, 1.005] [0.639, 1.005] [0.816, 1.006] [0.714, 1.006] [0.845, 1.006]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with conviction as
the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2 as specified in
Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.
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Table A4: Effects of conviction and incarceration on future criminal justice outcomes measured after 7 years

Never prev. convicted

All Fel. Misd. Fel. Misd.
(1) (2) (3) (4) (5)

Panel A: Number of charges over next 7 years
Incarceration rel. to conviction (∆c→p) [-0.214, -0.174] [-0.350, -0.316] [0.010, 0.091] [-0.298, -0.206] [-0.015, 0.033]

(-0.287, -0.107) (-0.446, -0.238) (-0.126, 0.206) (-0.424, -0.093) (-0.152, 0.154)

Incarceration rel. to not guilty (∆n→p) [0.165, 2.171] [-3.113, -0.467] [0.725, 4.546] [-2.395, 0.297] [0.988, 3.532]
(-0.544, 4.700) (-9.831, 3.605) (0.233, 6.873) (-10.378, 5.588) (0.337, 6.549)

Conviction rel. to not guilty (∆n→c) [-0.176, 0.069] [-0.376, -0.131] [-0.070, 0.176] [-0.227, 0.062] [0.243, 0.414]
(-0.336, 0.259) (-0.779, 0.147) (-0.277, 0.404) (-0.440, 0.313) (0.027, 0.660)

Panel B: Number of convictions over next 7 years
Incarceration rel. to conviction (∆c→p) [-0.295, -0.250] [-0.405, -0.363] [-0.132, -0.036] [-0.303, -0.177] [-0.039, 0.037]

(-0.397, -0.145) (-0.512, -0.264) (-0.346, 0.172) (-0.448, -0.047) (-0.274, 0.260)

Incarceration rel. to not guilty (∆n→p) [0.176, 2.805] [-4.785, -0.751] [0.946, 6.217] [0.260, 1.363] [1.251, 4.666]
(-0.908, 6.340) (-13.736, 4.167) (0.114, 10.293) (-9.055, 9.576) (0.277, 8.485)

Conviction rel. to not guilty (∆n→c) [0.085, 0.382] [-0.468, -0.022] [0.195, 0.598] [-0.119, 0.164] [0.531, 0.781]
(-0.112, 0.621) (-0.989, 0.321) (-0.070, 0.976) (-0.562, 0.434) (0.227, 1.143)

Weight on c→ p effect [0.977, 1.000] [0.990, 1.000] [0.949, 1.000] [0.989, 1.000] [0.967, 1.000]
Weight on n→ p effect [0.000, 0.054] [0.000, 0.038] [0.000, 0.085] [0.000, 0.044] [0.000, 0.073]
Weight on n→ c effect [0.062, 0.084] [0.030, 0.045] [0.122, 0.158] [0.040, 0.057] [0.117, 0.144]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with incarceration
as the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2 as specified in
Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.
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Table A5: Policy effects after 7 years

Change in treatment shares Effects on outcomes

n c p N. charges N. conv.

Panel A: Felony defendants
Incarceration leniency (g2 ↓) 0.000 [0.009, 0.010] [-0.010, -0.009] [0.329, 0.757] [0.298, 0.834]

(0.212, 1.061) (0.191, 1.205)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.007] [-0.003, 0.000] [-0.093, 0.219] [-0.043, 0.155]
(-0.362, 0.421) (-0.376, 0.465)

No incarceration (g2 = 0) 0.000 0.292 -0.292 [0.077, 0.308] [0.127, 0.321]
(-0.036, 0.377) (0.006, 0.482)

No conviction (g1 = 0) 0.874 -0.582 -0.292 [-11.842, -11.779] [-4.454, -4.370]
(-22.263, -1.352) (-18.724, 9.902)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.224, 0.187] [-0.216, 0.209]

(-0.333, 0.409) (-0.350, 0.482)

Panel B: Misdemeanor defendants
Incarceration leniency (g2 ↓) 0.000 [0.005, 0.010] [-0.010, -0.005] [-0.246, 0.205] [-0.283, 0.368]

(-0.386, 0.396) (-0.514, 0.654)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.008] [-0.002, 0.000] [-0.151, 0.185] [-0.481, -0.003]
(-0.362, 0.371) (-0.791, 0.226)

No incarceration (g2 = 0) 0.000 0.107 -0.107 [-0.035, 0.039] [-0.051, 0.049]
(-0.055, 0.070) (-0.080, 0.094)

No conviction (g1 = 0) 0.539 -0.433 -0.107 [-0.775, -0.766] [-1.259, -1.245]
(-1.500, -0.041) (-2.108, -0.398)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.014, 0.283] [0.008, 0.477]

(-0.154, 0.386) (-0.208, 0.629)

Panel C: Never-convicted misdemeanor defendants
Incarceration leniency (g2 ↓) 0.000 [0.005, 0.010] [-0.010, -0.005] [-0.179, 0.144] [-0.279, 0.210]

(-0.340, 0.353) (-0.535, 0.550)

Conviction leniency (g1 ↓) 0.010 [-0.010, -0.008] [-0.002, 0.000] [-0.295, -0.061] [-0.598, -0.297]
(-0.468, 0.113) (-0.876, -0.062)

No incarceration (g2 = 0) 0.000 0.089 -0.090 [-0.019, 0.015] [-0.027, 0.023]
(-0.035, 0.039) (-0.052, 0.059)

No conviction (g1 = 0) 0.536 -0.446 -0.090 [-0.704, -0.693] [-1.189, -1.173]
(-1.384, -0.013) (-1.942, -0.420)

Homogenize judges
(
g(z, x) = g(x)

)
0.000 0.000 0.000 [-0.011, 0.206] [0.020, 0.346]

(-0.182, 0.301) (-0.210, 0.483)

Table reports the effects of a number of policy changes on recidivism. We analyze marginal changes, which shift judges’
thresholds g by 0.01, as well as global changes. The change in treatment shares is the change from the given policy. The
change in outcomes is rescaled by the number of defendants whose treatment is affected by the policy change for the marginal
changes to assist in readability. Bounds are in square brackets and the outer edges of 95% confidence intervals in parentheses
are calculated using Bei (2023).
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Table A6: Effects of conviction and incarceration on future criminal justice outcomes, Ali-Mikhail-Haq
unobservables

Never prev. convicted

All Fel. Misd. Fel. Misd.
(1) (2) (3) (4) (5)

Panel A: Number of charges over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.250, -0.232] [-0.376, -0.370] [-0.007, 0.053] [-0.333, -0.310] [-0.032, 0.023]

(-0.307, -0.170) (-0.418, -0.327) (-0.139, 0.180) (-0.383, -0.249) (-0.151, 0.139)

Incarceration rel. to not guilty (∆n→p) [0.220, 1.104] [-0.301, 0.152] [0.563, 2.126] [-0.528, -0.069] [0.846, 1.909]
(-0.214, 1.899) (-1.052, 1.308) (0.084, 3.366) (-1.555, 0.112) (0.495, 3.204)

Conviction rel. to not guilty (∆n→c) [-0.035, 0.066] [-0.270, -0.104] [0.068, 0.146] [-0.147, -0.036] [0.293, 0.343]
(-0.216, 0.226) (-0.636, 0.169) (-0.131, 0.341) (-0.458, 0.200) (0.175, 0.457)

Panel B: Number of convictions over next 5 years
Incarceration rel. to conviction (∆c→p) [-0.284, -0.261] [-0.362, -0.351] [-0.135, -0.067] [-0.272, -0.251] [-0.078, -0.013]

(-0.358, -0.180) (-0.370, -0.343) (-0.290, 0.075) (-0.375, -0.150) (-0.224, 0.120)

Incarceration rel. to not guilty (∆n→p) [0.331, 1.364] [-0.395, 0.192] [0.786, 2.623] [0.039, 0.278] [1.166, 2.398]
(-0.267, 2.362) (-1.459, 1.517) (0.188, 4.381) (-0.925, 1.736) (0.745, 4.130)

Conviction rel. to not guilty (∆n→c) [0.195, 0.345] [-0.379, -0.101] [0.446, 0.556] [-0.141, 0.016] [0.540, 0.620]
(0.000, 0.515) (-0.760, 0.181) (0.242, 0.758) (-0.456, 0.255) (0.310, 0.838)

Weight on c→ p effect [0.977, 0.977] [0.989, 0.992] [0.947, 0.971] [0.989, 0.991] [0.966, 0.978]
Weight on n→ p effect [0.051, 0.054] [0.023, 0.037] [0.041, 0.086] [0.023, 0.043] [0.035, 0.074]
Weight on n→ c effect [0.065, 0.067] [0.030, 0.039] [0.131, 0.156] [0.042, 0.051] [0.124, 0.142]
This table reports treatment effects of conviction and incarceration, aggregated using the weights from a 2SLS regression with incarceration
as the treatment and judge dummies as the instruments. MTRs are approximated by a second-degree polynomial in u1 and u2 as specified in
Section 5.5. Bounds in square brackets and 95% confidence intervals calculated using Bei (2023) in parentheses.
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Table A7: Response types (D(z), D(z′)) between a pair of judges z, z′ ∈ Z with Dcp(z) ≥ Dcp(z′)

Assumption Ordering (D(z), D(z′))

(n,n) (n,c) (n,p) (c,n) (c,c) (c,p) (p,n) (p,c) (p,p)
Ordered Dp(z) ≥ Dp(z

′) X X X X X X

Unordered
Dc(z) ≥ Dc(z

′), Dp(z) ≥ Dp(z
′) X X X X X

Dc(z) ≥ Dc(z
′), Dp(z) ≤ Dp(z

′) X X X X X

Dc(z) ≤ Dc(z
′), Dp(z) ≥ Dp(z

′) X X X X X

Single Index
g2(z) < g1(z′) X X X X X

g1(z′) < g2(z) < g2(z′) X X X X X

g2(z′) < g2(z) X X X X X

Latent
D∗p(z) ≥ D∗p(z′) X X X X X X

D∗p(z) ≤ D∗p(z′) X X X X X X

Treatments are n (not guilty or dismissed), c (convicted but not incarcerated), and p (incarcerated). Ordered
refers to Assumption OM, and Unordered refers to Assumption UM, Single Index refers to Assumption SI and
Latent refers to Assumption LM. Ordering refers to the additional monotonicity conditions imposed by the
assumptions in addition to Dcp(z) ≥ Dcp(z

′), which is imposed by all four assumptions (in SI this implies
that g1(z) ≤ g1(z′)). Note that the ordering Dc(z) ≤ Dc(z

′), Dp(z) ≥ Dp(z) doesn’t logically exist when
Dcp(z) ≥ Dcp(z).
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Table A8: Treatment assignment by judge for each compliance group in single-index example

Judge

Group ` 0 1 2

(0.25, 0.30] c p p
(0.30, 0.35] n p p
(0.35, 0.40] n c p
(0.40, 0.74] n c c
(0.75, 0.85] n n c

This table reports the treatment as-
signment under judge j for each of
the treatment compliance types in-
duced by the single-index treatment
model defined in SI where the judges
judges have incarceration and con-
viction thresholds of (g2(z), g1(z)) ∈
{(0.25, 0.30), (0.35, 0.75), (0.40, 0.85)}.
This generates five compliance groups,
which are listed along the rows.

Table A9: Weights on compliance groups in two-treatment 2SLS

Wt. for `’s t→s effect in βc coef. (φ`cst) Wt. for `’s t→s effect in βp coef. (φ`pst)

Group ` n→c n→p c→p c→n p→n p→c n→c n→p c→p c→n p→n p→c

(0.25, 0.30] 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
(0.30, 0.35] 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
(0.35, 0.40] 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.4 0.2 0.0 0.0
(0.40, 0.75] 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0
(0.75, 0.85] 0.0 0.0 0.0 0.8 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0
This table reports the weights for the different compliance groups generated in a regression where both
incarceration and conviction are instrumented for with judge assignment. We assume that treatment is
determined by the single-index model defined in SI, and that there are three equally-likely judges who
have incarceration and conviction thresholds of (g2(z), g1(z)) ∈ {(0.25, 0.30), (0.35, 0.75), (0.40, 0.85)}. This
generates five compliance groups, with u ∈ {(0.25, 0.30], (0.30, 0.35], (0.35, 0, 40], (0.40, 0.75], (0.75, 0.85]}.
φ`cst is the weight of the t→s effect for group ` in the coefficient on treatment c; φ`pst is the analogous weight
for the p coefficient.
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Table A10: Using the Frandsen-Lefgren-Leslie test to test model assumptions

Test for single-index and latent monotonicity Test for single-index

(1) (2) (3) (4)
Any past charge ×Dn Any charges ×Dn Any past charge ×Dp Any charges ×Dp

χ2 828 850 1337 1201
Deg. of freeom 1208 1208 1208 1208
p-value 1 1 .00532 .55
Observations 638,684 638,684 638,684 638,684
This table displays results from the semi-parametric Frandsen test to adjudicate between choice models. Outcomes of the
form XDn apply the Frandsen-Lefgren-Leslie test with judges instrumenting for Dn, and XDp does so for Dp. The table
reports results from the fit component of the Frandsen-Lefgren-Leslie test, applied with 3 knots and done separately across
court-year cells. The chi-square test statistics and degrees of freedom are aggregated across cells to test the joint condition.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A11: Comparison of different methods for estimating multiple treatment effects

Labeling effect (MTEn→c) Decarceration effect (MTEp→c)

HOSSD 2023 KNP 2024 HOSSD 2023 KNP 2024

Choice model: Util. max. Latent mono. Util. max. Util. max. Latent mono. Util. max.
Identification: X separability Z Z X separability Z Z
Estimation: Mountjoy 2022 KNP 2024 Mountjoy 2022 Mountjoy 2022 KNP 2024 Mountjoy 2022

(1) (2) (3) (4) (5) (6)

All -0.494 [-0.185, 0.071] [-0.896, -0.437] 0.381 [0.202, 0.246] [0.799, 1.313]
(-0.925, -0.063) (-0.315, 0.217) (-1.267, -0.156) (0.254, 0.508) (0.143, 0.322) (0.616, 1.582)

Fel. -0.545 [-0.304, -0.087] [-0.817, -0.519] 0.509 [0.345, 0.379] [0.762, 1.040]
(-1.181, 0.091) (-0.617, 0.167) (-1.301, -0.083) (0.396, 0.622) (0.269, 0.461) (0.565, 1.286)

Mun. -0.520 [-0.124, 0.151] [-0.940, -0.508] 0.289 [-0.071, 0.021] [1.164, 2.755]
(-0.972, -0.069) (-0.305, 0.365) (-1.333, -0.247) (0.055, 0.523) (-0.159, 0.147) (0.836, 3.541)

Fel. (No prev. conv.) -0.206 [-0.187, 0.015] [-0.509, -0.125] 0.453 [0.265, 0.333] [0.413, 0.754]
(-0.893, 0.480) (-0.417, 0.227) (-1.194, 0.503) (0.296, 0.610) (0.195, 0.426) (0.061, 1.159)

Mun. (No prev. conv.) -0.290 [0.165, 0.351] [-1.014, -0.371] 0.324 [-0.024, 0.037] [1.121, 3.096]
(-0.735, 0.154) (-0.016, 0.492) (-1.592, -0.079) (0.073, 0.575) (-0.097, 0.122) (0.758, 4.396)

This table reports treatment effects of conviction relative to incarceration and to no punishment on the number of charges over the next 5
years. The KNP results are identical to the baseline 2SLS-weighted structural estimates reported in Table 4, while the HOSSD results use the
utility maximization model of Humphries et al. (2023). Their baseline model, which relies on separability of covariates X from the instruments
for identification, is estimated on our data and shown in columns (1) and (4). We also estimate the same choice model without relying on
separability for identification. These partially identified results are shown in columns (3) and (6). Bounds in square brackets and 95% confidence
intervals in parentheses.
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